All features work when used with google slides. All features should work with PowerPoint, but might need some rearranging.
By the end of the lesson learners will be able to:
Identify the elements that are radioactive.
Describe what is meant by a radioactive material.
Explain the trend in radioactive decay.
All features work when used with google slides. All features should work with PowerPoint, but might need some rearranging.
By the end of the lesson learners will be able to:
Identify the forces acting on objects as they move away from Earth.
Describe how to get a satellite into orbit.
Evaluate the uses of satellites.
By the end of the lesson learners should be able to:
Identify the make up of atoms.
Describe how cloud chambers are used to detect particles and properties about them.
Explain why particle accelerators are useful for explaining the makeup of matter.
By the end of the lesson learners should be able to:
Identify carrier waves.
Describe how waves can be modulated by amplitude or frequency.
Explain why radio receivers are often able to detect a signal over a large area.
By the end of the lesson learners should be able to:
Identify what is meant by a parallax
Describe how to convert a distant star, Earth and the Sun into a triangle.
Justify which trigonometric formula to use to calculate the distance between a distant star and Earth or the Sun.
By the end of the lesson learners should be able to:
Identify what is needed for GPS to work.
Describe how a RADAR system detects objects.
Explain why a stellar parallax is used to measure the distance of stars instead of RADAR.
By the end of the lesson learners should be able to:
Identify pivots.
Describe how a moment is made.
Explain why doors have their handle on the furthest point from the pivot.
By the end of the lesson learners will be able to:
State what is meant by nuclear fission.
Describe how nuclear fission can cause a chain reaction.
Explain why nuclear fission must be controlled.
A revision session containing a mind map (with guidance and without).
A Powerpoint containing a quiz session (10 questions) - excellent for a starter / plenary.
Answers to each section of the mind map within the Powerpoint.
A comprehensive Powerpoint which will allows for students to learn about luminous and non-luminous objects, opaque, transparent and translucent objects and how thickness of a translucent object affects the amount of light traveling through.
I personally use this as an introductory lesson to the light topic.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how objects interact with light.
Success criteria:
-Identify luminous and non-luminous materials.
-Describe how light interacts with a translucent material.
-Explain why the thickness of a translucent material affects the light.
This lesson contains 17 slides.
By the end of the lesson learners will be able to:
Identify what’s meant by a radioactive atom.
Describe how a GM tube measures radiation.
Explain why radioactive sources become less dangerous as time passes.
By the end of the lesson learners will be able to:
State what is meant by kinetic and gravitational energy.
Describe how to calculate kinetic and gravitational energy.
Explain why pendulums within a closed system will remain swinging at a fixed height.
By the end of the lesson learners will be able to:
State what’s produced when an unstable atom breaks down.
Describe what is meant by half-life.
Explain why atoms with a high radioactivity will have a short half-life.
By the end of the lesson learners will be able to:
Identify acceleration, constant velocity and deceleration on a velocity-time graph.
Describe how to calculate distance travelled using a velocity-time graph.
Compare the movement of two objects on a velocity-time graph.
By the end of the lesson learners will be able to:
State the law of conservation of energy.
Describe what’s meant by energy efficiency.
Create Sankey diagrams.
By the end of the lesson learners should be able to:
Identify different types of waves.
Describe how to measure properties of waves.
Compare constructive and destructive interference.
A resource containing a comprehensive powerpoint slideshow that will guide learners through gravity and electrostatic non contact forces.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how forces can act at a distance and explain why these forces are present.
Success criteria:
-Identify non-contact forces.
-Describe how objects react to some non-contact forces.
-Explain why non-contact forces are needed for our daily lives.
This lesson contains 17 slides
Produced to be used when delivering the activate 1 pathway.
A resource containing 2 powerpoint slides for 2 lessons and a worksheet for applying Hooke’s law and analysing data.
I run the resource as an initial practical for investigating Hooke’s law and the second lesson to further solidify theory.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
For the practical lesson:
By the end of the lesson students should be able to:
Learning objective: Investigate the effects of forces on the extension of a spring.
Success criteria:
-Identify independent and dependent variables.
-Describe how to write a method concerning spring extension.
-Explain why repeatability and reliability are important factors within experiments.
This lesson contains 17 slides.
For the theory lesson:
By the end of the lesson students should be able to:
Learning objective: To analyse the results and draw conclusions between the spring practical and Hooke’s law theory.
Success criteria:
Identify the forces needed to extend and compress a spring.
Describe Hooke’s law.
Explain why the pattern for Hooke’s law does not remain indefinitely.
This lesson contains 17 slides.
The worksheet contains 2 pages.
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about drag forces friction and air resistance.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how drag forces affect the movement of an object.
Success criteria:
Identify 2 drag forces.
Describe how drag forces affect objects.
Explain why air resistance and friction can be useful and a nuisance.
This lesson contains 22 slides