Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1129k+Views

1932k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Health and disease
GJHeducationGJHeducation

Health and disease

(0)
A fast-paced lesson that explores the meaning of “health” and introduces the idea of communicable and non-communicable diseases. The lesson begins by showing the students an example of a health survey so they can complete a definition of the meaning of this term. Despite being widely used in the English language, the actual Scientific definition is not always well known by students so this 1st task is an important one. Moving forwards, students are given 5 minutes to see if they can fill an A-Z with the names of different diseases. Students will learn that diseases can be grouped as communicable or non-communicable and will be encouraged to discuss what the determining factor is on this classification. A quiz competition called “TO COM or NOT TO COM” is a play on words of Shakespeare’s famous saying but acts to test whether the students can distinguish a number of diseases as being spread by pathogens or not. After each disease is revealed, time is taken to look at the details of some of them like cystic fibrosis and the zika virus. The lesson concludes with the example of the human-papilloma virus and the connection between this and cervical cancer so that students can recognise that sometimes both types of disease are involved. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used with younger students who are looking at the healthy living topic.
Controlling body temperature
GJHeducationGJHeducation

Controlling body temperature

(0)
A fully-resourced lesson which includes a detailed and engaging lesson presentation (36 slides) and an assistance worksheet for those students who feel that they need extra assistance with the final description. This lesson looks at how body temperature is controlled in humans through a homeostatic mechanism and includes details of a negative feedback loop. The lesson begins with a three pronged task where students have to use the clues to come up with the word homeostasis and the number 37 and then see if they can make the link in the human body. Time is taken to ensure that students recognise why maintaining the temperature around this set-point is so crucial in terms of the effectiveness of enzymes in reactions. There is a real focus on key terminology throughout such as thermoreceptors and hypothalamus and guidance is given on how to use these terms accurately. Discussion points and progress checks are written into the lesson at regular intervals so that students are encouraged to challenge the Biology whilst being able to assess their understanding. They are shown how to write a detailed description of the response to an increase in temperature so they are able to form their own description of the response to a fall in temperature. This lesson has been written for GCSE students but is perfectly suitable for older students studying thermoregulation at A-level and want to revisit the knowledge.
Efficiency of biomass transfer
GJHeducationGJHeducation

Efficiency of biomass transfer

(0)
An informative lesson that looks at how energy is lost at each stage of a food chain and how this affects the biomass of consumers. This lesson has been written for GCSE students but could be used with A-level students who are revisiting this ecology topic. The lesson begins by posing a question to the students about why herbivores tend to be raised for food rather than carnivores to see how they would tackle it at this early stage. This exact question is revisited at the end of the lesson once learning has occurred so that students can monitor their own progress. Time is taken to look back at pyramids of biomass and food chains so that students are reminded of key terminology such as trophic level and also recognise that the biomass decreases at each level. A number of quick competitions have been written into the lesson to maintain engagement but also to introduce key terms and numbers (like 10%) in a different way. The main part of the lesson looks at how the energy is lost by organisms that leads to the decrease in biomass and links are made to related topics such as respiration and homeostasis.
Controlling blood glucose concentration
GJHeducationGJHeducation

Controlling blood glucose concentration

(0)
This engaging lesson guides students through the homeostatic control mechanism which is involved in controlling blood glucose concentrations and focuses on the critical interconversion between glucose and glycogen which is often poorly understood. The lesson begins by introducing glucose and ensuring that students recognise that this is a simple sugar which is critical for respiration. Links are made here and throughout the lesson to relateable topics such as the endocrine system so that students can recognise how exam questions will often encompass more than one topic. Students are challenged to recall knowledge about the pancreas and its release of insulin into the blood to travel to the liver. A quick competition is then used to maintain engagement and to introduce glycogen. Due to the large number of words beginning with g that are involved in this topic, time is taken to describe the role of glycogen so that it is not mistaken for glucose or glucagon. Students will learn how the conversion from glucose to glycogen and also the other way round is critical to how the concentration is controlled. The main student tasks involve them completing a partially finished passage about responding to an increase in blood glucose concentration and then using this as a guide to write their own full versions for when concentrations are low. These are just two of a number of progress checks that are written into the lesson at regular intervals so that students can constantly assess their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but could be used for A-level lessons that are recapping on this topic before extra knowledge is added at this higher level
Topic B2:  Scaling up (OCR Gateway A GCSE Combined Science & GCSE Biology)
GJHeducationGJHeducation

Topic B2: Scaling up (OCR Gateway A GCSE Combined Science & GCSE Biology)

13 Resources
This bundle of 13 lessons covers the majority of the content in Topic B2 (Scaling Up) of the OCR Gateway A GCSE Combined Science & GCSE Biology specifications. The topics covered within these lessons include: Mitosis Cell differentiation Cell specialisation Stem cells Diffusion Osmosis Active transport Exchange surfaces The heart in the circulatory system The blood and blood vessels Plant transport systems Transpiration All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B6: Inheritance, Variation and Evolution (AQA Trilogy GCSE Combined Science)
GJHeducationGJHeducation

Topic B6: Inheritance, Variation and Evolution (AQA Trilogy GCSE Combined Science)

14 Resources
This bundle of 14 lessons covers the majority of the content in Topic B6 (Inheritance, Variation and Evolution) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include: DNA Reproduction Meiosis X and Y chromosomes Genetic diagrams Inherited disorders Variation Evolution Selective breeding Genetic engineering Fossils Antibiotic-resistant bacteria Classification All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B4: Bioenergetics (AQA Trilogy GCSE Combined Science & GCSE Biology)
GJHeducationGJHeducation

Topic B4: Bioenergetics (AQA Trilogy GCSE Combined Science & GCSE Biology)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic B4 (Bioenergetics) of the AQA Trilogy GCSE Combined Science & GCSE Biology specifications. The topics covered within these lessons include: Photosynthesis Uses of glucose from photosynthesis Limiting factors Aerobic respiration Anaerobic respiration Response to exercise All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B4: Natural selection and genetic modification (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic B4: Natural selection and genetic modification (Edexcel GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers a lot of the content in Topic B4 (Natural selection and genetic modification) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: The theory of evolution by natural selection Resistant bacteria as evidence for natural selection Classification Selective breeding and the impact The main stages of genetic engineering The risks of genetic engineering All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Genetic engineering (GCSE)
GJHeducationGJHeducation

Genetic engineering (GCSE)

(0)
This lesson uses the example of the genetic engineering of bacteria to produce insulin to walk students through the steps involved in this process. It has been written for GCSE students and therefore includes the detail required at this level, such as the involvement of restriction enzymes and the sticky ends that their cut produces. The lesson begins by challenging students to recognise that insulin is being described by a series of clues. Some further details of this hormone are recalled to test their previous knowledge of the endocrine system and also to lead into the genetic engineering of bacteria to make this protein. Moving forwards, time is taken to go through the details of plasmids and how they act as vectors as well as the enzymes, restriction and ligase. The main task of the lesson uses a series of descriptions to go through the steps involved in the process. Words or phrases are missing from each description so students have to use the terms they’ve encountered in this lesson as well as their prior knowledge to complete the step. Discussion-provoking questions are added to encourage the students to consider why certain parts of the process occur. The lesson concludes by the consideration of other organisms which have been genetically engineered as well as some of the risks of the process, which students are asked to complete for homework. As detailed above, this lesson has been designed for GCSE students but could be used with students taking A-level Biology, who are struggling to understand the detail found at this level and need to revisit the foundations.
Topic 4: Exchange and transport (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4: Exchange and transport (Edexcel A-level Biology B)

18 Resources
The wide variety of tasks that are written into the 18 lesson PowerPoints and accompanying resources that are included in this lesson bundle will engage and motivate the students whilst covering the detailed content of topic 4 of the Edexcel A-level Biology B specification (Exchange and transport). The following specification points are covered by these lessons: Understand how the surface area to volume ratio affects the transport of molecules in living organisms Understand why organisms need a mass transport system and specialised gas exchange surfaces as they increase in size The structure of the cell surface membrane Passive transport is brought about by diffusion and facilitated diffusion Passive transport is brought about by osmosis Understand how the properties of molecules affects how they are transported Large molecules are transported in and out of cells by endocytosis and exocytosis The process of active transport The phosphorylation and hydrolysis of ATP Understand how insects, fish and mammals are adapted for gas exchange The structure of the heart, arteries, veins and capillaries The advantages of the double circulatory system The sequence of events of the cardiac cycle The myogenic stimulation of the heart Interpreting ECG traces The role of platelets and plasma proteins in the sequence of events leading to blood clotting The structure of haemoglobin in relation to its role in the transport of respiratory gases The Bohr effect The dissociation curve of haemoglobin The significance of the oxygen affinity of foetal haemoglobin The similarities and differences between the structure and function of haemoglobin and myoglobin The formation and reabsorption of tissue fluid Know that tissue fluid that is not reabsorbed is returned to the blood via the lymph The structure of the xylem and phloem in relation to their role in transport The movement of water by the apoplastic and symplastic pathways The cohesion-tension model Hours and hours has gone into the intricate planning of all of these lessons and the quality can be sampled by downloading the following lessons which have been uploaded for free: Surface area to volume ratio ATP, active transport, endocytosis and exocytosis Structure of the heart, arteries, veins and capillaries Double circulatory system Apoplastic and symplastic pathways
Topic 4.4: Circulation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.4: Circulation (Edexcel A-level Biology B)

5 Resources
The 5 lesson PowerPoints and multiple accompanying resources that are included in this bundle are highly-detailed and engaging. A wide variety of tasks, which include exam-style questions, differentiated tasks, discussion points and quiz competitions will check on the student understanding of the following specification points in topic 4.4 of the Edexcel A-level Biology B specification: The structure of the heart, arteries, veins and capillaries The advantages of a double circulatory system The sequence of events of the cardiac cycle The roles of the SAN, AVN and the bundle of His in the myogenic stimulation of the heart Interpreting ECG traces and pressure changes in the cardiac cycle The role of platelets and plasma proteins in the sequence of events leading to blood clotting The heart & blood vessels and the double circulatory system lesson have been uploaded for free so you can sample the quality of this bundle by downloading those
Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)

4 Resources
This bundle of 4 fully-resourced lessons have been planned to include a wide variety of tasks which will engage and motivate the students whilst covering the following points as detailed in topic 4.2 of the Edexcel A-level Biology B specification: The structure of the cell surface membrane, with reference to the fluid mosaic model Passive transport is brought about by diffusion and facilitated diffusion Passive transport is brought about by osmosis The relationship between the properties of molecules and the method by which they are transported Large molecules can be transported in and out of cells by endocytosis and exocytosis The process of active transport and the role of ATP The phosphorylation of ADP and the hydrolysis of ATP If you would like to sample the quality of the lessons in this bundle, then download the ATP & active transport lesson as this has been shared for free
Enzymes and temperature (AQA A-level Biology)
GJHeducationGJHeducation

Enzymes and temperature (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the temperature affects the rate of an enzyme-controlled reaction. The PowerPoint and the accompanying resource have been designed to cover the second part of point 1.4.2 of the AQA A-level Biology specification and ties in directly with the previous lesson on the properties of enzymes and their mechanism of action. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these future lessons. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and result in an active site that is no longer complementary to the substrate. Key terminology such as denaturation is used throughout. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of reaction and not the practical skills that would be covered in a core practical lesson
Competitive & non-competitive inhibitors (AQA A-level Biology)
GJHeducationGJHeducation

Competitive & non-competitive inhibitors (AQA A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-controlled reaction. The PowerPoint and accompanying resource are the last in a series of 5 lessons which cover the content detailed in point 1.4.2 of the AQA A-level Biology specification and describes the effect of both competitive and non-competitive inhibitors. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this will get the students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Action of enzymes (CIE A-level Biology)
GJHeducationGJHeducation

Action of enzymes (CIE A-level Biology)

(0)
This fully-resourced lesson describes how enzymes function intracellularly and extracellularly and explains their mode of action. The engaging PowerPoint and accompanying resources have been designed to cover points 3.1 (a, b & c) and considers the details of Fischer’s lock and key hypothesis and Koshland’s induced-fit model and explains how an enzyme’s specificity is related to their 3D structure and enables them to act as biological catalysts. The lesson has been planned to tie in with topic 2.3, and to challenge the students on their knowledge of protein structure and globular proteins. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication before they are challenged on their knowledge of carbohydrates, lipids and proteins from topics 1.2 - 1.4 as they have to recognise some extracellular digestive enzymes from descriptions of their biological molecule substrates.
Temperature & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Temperature & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains the effect of an increasing temperature on the rate of an enzyme-catalysed reaction. The PowerPoint and the accompanying resource are part of the 1st lesson in a series of 4 which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification and this lesson has been specifically planned to tie in with the lesson in 3.1 where the properties of enzymes and their mechanism of action were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in topics 19 and 13. Moving forwards, the rest of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of reaction and not the practical skills that would be covered in a core practical lesson
Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-catalysed reaction. The PowerPoint and accompanying resource are the last in a series of 4 lessons which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification but this lesson also covers point 3.2 [c] as competitive and non-competitive inhibitors are introduced and their differing effects on enzyme activity described and explained. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this allows students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors must have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Immobilising an enzyme (CIE A-level Biology)
GJHeducationGJHeducation

Immobilising an enzyme (CIE A-level Biology)

(0)
This lesson describes how enzymes can be immobilised in calcium alginate and compares their activity against enzymes that are free in solution. The PowerPoint and the accompanying resources have been designed to cover point 3.2 (d) of the CIE A-level Biology specification. The lesson has been planned to challenge the students on their ability to apply knowledge to a potentially unfamiliar situation. A series of exam-style questions which include “suggest” and “describe and explain” questions are used throughout the lesson and these will allow the students to recognise the advantages and disadvantages of a particular method. Although the alginate method is the only one referenced in this specification point, the adsorption and covalent bonding methods are introduced and then briefly analysed to allow students to understand that a matrix doesn’t involve these bonds which could disrupt the active site. The remainder of the lesson introduces some actual examples of the use of immobilised enzymes with the aim of increasing the relevance. Please note that this lesson has been written to explain the effect of immobilisation on enzyme activity. The practical element of carrying out the investigation is described in a separate lesson.
Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)
GJHeducationGJHeducation

Topics 1 & 2: Cell structure & Biological molecules (CIE A-level Biology)

18 Resources
It’s no coincidence that cell structure and biological molecules find themselves as topics 1 and 2 of the CIE A-level Biology course, because a clear understanding of their content is absolutely critical to promote success with the 17 topics that follow. Hours and hours of intricate planning has gone into the 18 lessons included in this bundle to ensure that the detailed content is relevant and can be understood and that links are made to related sections of topics 3 - 19. The lesson PowerPoints and accompanying resources contain a wide range of activities that include: differentiated exam-style questions with clear mark schemes directed discussion points quiz competitions to introduce key terms and values current understanding and prior knowledge checks Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content of the resources A number of the resources have been shared for free so these can be downloaded in order to sample the quality of the lessons
The chloroplast & photosynthesis (CIE A-level Biology)
GJHeducationGJHeducation

The chloroplast & photosynthesis (CIE A-level Biology)

(0)
This lesson describes the structure of the chloroplast, focusing on the sites of the light-dependent and light-independent stages of photosynthesis. This fully-resourced lesson, which consists of an engaging PowerPoint and accompanying resources, has been designed to cover points 13.1 (a) & (b) of the CIE A-level Biology specification and has been specifically designed to introduce students to the grana and stroma as the site of the light-dependent and light-independent stages respectively before they are covered in greater detail in the lessons that are taught later in topic 13.1. Students were introduced to eukaryotic cells and their organelles in topic 1 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled, a range of activities are used to ensure that key details are understood such as the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to TP in the Calvin cycle. Links to other topics are made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch, as originally covered in topic 2.2