Hero image

GJHeducation's Shop

Average Rating4.51
(based on 918 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1210k+Views

2017k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
AQA GCSE Chemistry Topic 3 REVISION (Quantitative chemistry)
GJHeducationGJHeducation

AQA GCSE Chemistry Topic 3 REVISION (Quantitative chemistry)

(17)
An engaging lesson presentation (80 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic 3 (Quantitative chemistry) of the AQA GCSE Chemistry specification (specification point C4.3). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to recognise whether to use Avogadro’s constant or the moles formula in a moles calculation question. The topics that are tested within the lesson include: Conservation of mass and balanced symbol equations Relative formula mass Mass changes when a reactant or product is a gas Moles Amounts of substances in equations Concentration of solutions Atom economy Molar volume Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY” and “In the BALANCE” whilst crucially being able to recognise those areas which need further attention
AQA GCSE Combined Science UNIT P2 (Electricity) REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science UNIT P2 (Electricity) REVISION

(14)
An engaging lesson presentation (60 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P2 (Electricity) of the AQA GCSE Combined Science specification. The topics that are tested within the lesson include: Circuit symbols Current, resistance and potential difference Series and parallel circuits Direct and alternating potential difference Mains electricity Power Static charge Students will be engaged through the numerous activities including quiz rounds like “It doesnt HURT to CONVERT” and “Take the HOTSEAT” whilst crucially being able to recognise those areas which need further attention
Hardy-Weinberg principle (OCR A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg principle (OCR A-level Biology)

(8)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equations to determine the frequency of alleles and genotypes in a population. Both the detailed PowerPoint and differentiated practice questions on a worksheet have been designed to cover point 6.1.2 (f) of the OCR A-level Biology specification which states that students should be able to demonstrate and apply their knowledge and understanding of the use of the principle to calculate allele frequencies in populations. The lesson begins by looking at the two equations and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged.
AQA GCSE Science Unit C4 REVISION (Chemical changes)
GJHeducationGJHeducation

AQA GCSE Science Unit C4 REVISION (Chemical changes)

(8)
A fully-resourced lesson (82 slides) that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Chemistry unit C4 (Chemical changes) of the AQA GCSE Combined Science specification (specification point C5.4) The topics that are tested within the lesson include: Reactivity series Extraction of metals and reduction Oxidation and reduction in terms of electrons Reactions of metals with acids Neutralisations Electrolysis Half equations Students will be engaged through the numerous activities including quiz rounds like “It’s time for ACTION” and “Number CRAZY” whilst crucially being able to recognise those areas which need further attention
AQA GCSE Combined Science Paper 2 REVISION (Biology topics B5 - B7)
GJHeducationGJHeducation

AQA GCSE Combined Science Paper 2 REVISION (Biology topics B5 - B7)

(8)
This is a fully-resourced REVISION lesson that consists of an engaging PowerPoint (121 slides) and associated worksheets that challenge the students on their knowledge of topics B5 - B7 (Homeostasis and response, Inheritance, variation and evolution and Ecology) of the AQA GCSE Combined Science Trilogy specification and can be assessed on PAPER 2. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content that can be assessed in paper, but the following sub-topics have been given particular attention: The structure of DNA Genetic terminology Inheritance crosses Sex determination IVF The structure of the nervous system Reflexes Type I and II Diabetes The main steps in the process of genetic engineering Antibiotic resistance Evolution by natural selection Ecological terms The carbon cycle The mathematic elements of the Combined Science specification are challenged throughout the resource. Due to the size of this resource, it is likely that teachers will choose to use it over the course of a number of lessons and it is suitable for use in the lead up to the mocks or in the lead up to the actual GCSE exams.
Ionic bonding and ionic compounds
GJHeducationGJHeducation

Ionic bonding and ionic compounds

(7)
This is a fully-resourced lesson that looks at how the transfer of electrons from metals to non-metals causes ionic bonds and compounds to form and then explores the different properties of these structures. The lesson includes a detailed and engaging lesson presentation (43 slides) and a task worksheet which has been differentiated two ways. The lesson begins by introducing the name of the type of bond, but does not go into any more detail at this stage. This is because the lesson is designed to allow the students to discover that in order for both of the atoms involved to get a full outer shell, electrons have to be transferred from one to the other. Over the course of the lesson, students will recognise that it is the metal that loses the electrons and becomes a positive ion whilst the non-metal gains the electrons and becomes a negative ion. There are lots of discussion and discovery points like this written into the lesson so that students can take ownership for their learning. Students are guided through drawing dot and cross diagrams to represent these compounds and as a result links are made to the topics of naming compounds, writing chemical formulae, forming ions and electron configurations. There are a number of quick competitions in the lesson which introduce new terms to the students. One such competition introduces the term lattice and the lesson builds from here to understand why ionic compounds have high melting and boiling points. Moving forwards, students will also learn that solid ionic compounds cannot conduct electricity whilst those in molten form or in an aqueous solution are able to. The final task of the lesson challenges the students to bring all of the information together they have seen to draw a dot and cross diagram for aluminium oxide, explain how it was formed and then explain how aluminium is extracted from this compound by electrolysis. This final task has been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE aged students but could be used with higher ability younger students who are pushing on with the elements, compounds and mixtures topic
Moments (Turning forces)
GJHeducationGJHeducation

Moments (Turning forces)

(6)
A fully-resourced lesson which looks at the calculation of a turning force and uses this to apply the principle of moments. The lesson includes an engaging and informative lesson presentation (24 slides) and a series of worksheets, some of which contain questions which have been differentiated. The lesson begins by getting the students to read through the scene from Friends which involves the famous “PIVOT”. This word has been removed from the scene and so students have to work out what it is and how it could relate to a Physics lesson. The rest of the lesson focuses on the range of calculation questions that students can face, which get progressively more difficult. At each stage of the lesson, students are guided through examples and given hints on points to be conscious of so that any silly mistakes can be eradicated. The principle of moments question worksheet has been differentiated two ways so that those students who need extra assistance are still able to access the learning. A homework question is also included in the lesson. This lesson has been written for GCSE students but should higher ability KS3 students want to really test themselves, it could be used with them.
Respiratory substrates & the respiratory quotient (OCR A-level Biology)
GJHeducationGJHeducation

Respiratory substrates & the respiratory quotient (OCR A-level Biology)

(6)
This fully-resourced lesson explores how glucose as well as the other respiratory substrates, such as lipids and proteins, can enter the respiratory pathway and therefore can be respired to produce molecules of ATP. The engaging PowerPoint and accompanying resources have been designed to cover points 5.2.2 (j) and (k) of the OCR A-level Biology A specification which states that students should know the difference in the relative energy values of carbohydrates, lipids and proteins and be able to use and interpret the respiratory quotient. This lesson has been written to challenge current understanding as well as the knowledge of glycolysis, the link reaction and Krebs cycle and so contains regular prior knowledge checks which come in a range of forms. Students will learn that lipids and proteins can be used as respiratory substrates and will recognise the different ways that they enter the respiratory pathway. A quick quiz competition is used to introduce the mean energy value for carbohydrates and students are challenged to predict how the values for lipids and proteins will compare. As a result, students will recognise that a greater number of hydrogen atoms results in a greater availability of protons to form the chemiosmotic gradient to fuel the production of ATP. The rest of the lesson focuses on the calculation of the respiratory quotient and time is taken to look at how the result can be interpreted to determine which substrates were respired.
AQA A-level Biology Topic 6 REVISION (Organisms respond to changes)
GJHeducationGJHeducation

AQA A-level Biology Topic 6 REVISION (Organisms respond to changes)

(6)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 6 (Organisms respond to the changes in the internal and external environment) of the AQA A-level Biology specification. The sub-topics and specification points that are tested within the lesson include: Nerve impulses Synaptic transmission Skeletal muscles are stimulated to contract by nerves and act as effectors The principles of homeostasis and negative feedback Control of blood glucose concentration Students will be engaged through the numerous quiz rounds such as “Communicate the word” and “Only CONNECT” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Gene mutations (AQA A-level Biology TOPIC 4)
GJHeducationGJHeducation

Gene mutations (AQA A-level Biology TOPIC 4)

(6)
This is a fully-resourced lesson which introduces gene mutations and then explores how these base changes affect the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the second part of point 4.3 of the AQA A-level Biology specification which states that students should be able to understand how base substitutions and base deletions change the base sequence and describe how this affects the polypeptide. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was taught in 4.2. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a quick quiz competition is used to introduce the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met in the previous lesson. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution.
Chi-squared test (CIE International A-level Biology)
GJHeducationGJHeducation

Chi-squared test (CIE International A-level Biology)

(6)
This lesson guides students through the use of the chi-squared test to test the significance of differences between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated task worksheets that have been designed to cover point 16.2 (d) of the CIE International A-level Biology specification which states that students should be able to use this statistical test to determine the significance. The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
Contraception (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Contraception (AQA GCSE Biology & Combined Science)

(5)
This engaging and detailed lesson has been written to cover the content of point 5.3.5 (Contraception) as detailed in the AQA GCSE Biology & Combined Science specifications. This is a topic which can be difficult to teach due to the awkwardness of a class or students believing that they already know all of the information without really knowing the detail which is laid out in the specification. With this in mind, a wide range of activities have been included in the lesson to maintain motivation whilst ensuring that this important detail is covered. Students will learn about a range of hormonal and non-hormonal methods including oral contraceptives, progesterone patches, condoms and diaphragms and IUDs. Time is taken to look at alternative methods such as abstaining from sexual intercourse during the times around ovulation and sterilisation. Due to the clear link to the topic of hormones in human reproduction, previous knowledge checks are written into the lesson and challenge the students on their knowledge of FSH, LH, oestrogen and progesterone. There are also mathematical skills check so that students are prepared for the added mathematical element in this course. This lesson has been written for GCSE-aged students who are studying on the AQA GCSE Biology or Combined Science courses but is suitable for younger students who are looking at contraception in their Science lessons
OCR Gateway A GCSE Combined Science P2 (Forces) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science P2 (Forces) REVISION

(5)
An engaging lesson presentation (63 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module P2 (Forces) of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Distance, time and speed Acceleration Equations of motion Kinetic energy Forces and interactions Momentum Work and Power Stretching springs Students will be engaged through the numerous activities including quiz rounds like “Fill the VOID” and “Weight a minute” whilst crucially being able to recognise those areas which need further attention
Genetic technology (CIE International A-level Biology)
GJHeducationGJHeducation

Genetic technology (CIE International A-level Biology)

(5)
This extensive and fully-resourced lesson describes the steps in the production of recombinant DNA in genetic technology. Both the engaging PowerPoint and accompanying resources have been written to cover all of the detailed content of topic 19.1 of the CIE International A-level Biology specification apart from the polymerase chain reaction and gel electrophoresis as these are found in other uploaded lessons. The lesson begins with a definition of recombinant DNA to allow students to begin to understand how this process involves the transfer of DNA fragments from one species to another. Links are made to the genetic code and transcription and translation mechanisms, which were met in topic 6, in order to explain how the transferred gene can be translated in the transgenic organism. Moving forwards, the method involving reverse transcriptase and DNA polymerase is introduced and their knowledge of the structure of the polynucleotides and the roles of enzymes is challenged through questions and discussion points. Restriction enzymes are then introduced and time is taken to look at the structure of a restriction site as well as the production of sticky ends due to the staggered cut on the DNA. A series of exam-style questions with displayed mark schemes are used to allow the students to assess their current understanding. The second half of the lesson looks at the culture of transformed host cells as an in vivo method to amplify DNA fragments. Students will learn that bacterial cells are the most commonly transformed cells so the next task challenges their recall of the structures of these cells so that plasmid DNA can be examined from that point onwards. The following key steps are described and explained: • Remove and prepare the plasmid to act as a vector • Insert the DNA fragment into the vector • Transfer the recombinant plasmid into the host cell • Identify the cells which have taken up the recombinant plasmid • Allow the transformed host cells to replicate and express the novel gene Time is taken to explore the finer details of each step such as the addition of the promoter and terminator regions, use of the same restriction enzyme to cut the plasmid as was used to cut the gene and the different types of marker genes. As well as understanding and prior knowledge checks, quick quiz competitions are used throughout the lesson to introduce key terms such as cDNA and EcoR1 in a memorable way. Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours to cover the points
Epistasis (AQA A-level Biology)
GJHeducationGJHeducation

Epistasis (AQA A-level Biology)

(4)
This fully-resourced lesson explores how the presence of particular alleles at one locus can mask the expression of alleles at a second locus in epistasis. The detailed and engaging PowerPoint and associated resources have been designed to cover the part of point 7.1 of the AQA A-level specification which states that students should be able to use fully-labelled genetic diagrams to predict or interpret the results of crosses involving epistasis. This is a topic which students tend to find difficult, and therefore the lesson was written to split the topic into small chunks where examples of dominant, recessive and complimentary epistasis are considered, discussed at length and then explained. Understanding checks, in various forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. There are regular links to related topics such as dihybrid inheritance so that students can meet the challenge of interpreting genotypes as well as recognising the different types of epistasis. The lesson has been designed to tie in with the other uploaded lessons on the topic of inheritance (7.1), so if you like the quality of this lesson please take a moment to look at these too
Natural selection
GJHeducationGJHeducation

Natural selection

(5)
A fully-resourced lesson which is designed for GCSE students and includes an informative lesson presentation (29 slides) and question worksheets. This lesson explores the theory of evolution by natural selection. The lesson begins with a fun challenge which gets students to come up with the name Charles Darwin but also the phrase “survival of the fittest”. The main focus of the next part of the lesson is to take students through this tag line, adding detail and keywords which they will be able to use in their answers later in the lessons. Students are continually encouraged to discuss key questions on this topic, such as “are all mutations harmful”? They will recognise how these random changes in DNA can lead to advantageous phenotypes and how this can convey a survival edge to organisms. Moving forwards, students are guided through the well-known example of the peppered moths in order to show them to how to use variation, advantage, survival, reproduction and offspring in their answers on this topic. The remainder of the lesson involves students testing their new-found knowledge as they have to apply it to explain how resistance in bacteria and longer necks in giraffes have evolved. Progress checks are written into this lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be immediately addressed.
Anaerobic respiration (AQA A-level Biology)
GJHeducationGJHeducation

Anaerobic respiration (AQA A-level Biology)

(5)
This fully-resourced lesson explores how pyruvate can be converted to lactate or ethanol using reduced NAD and that the reoxidation of the coenzyme allows glycolysis to continue. The engaging and detailed PowerPoint and accompanying differentiated resources have been designed to cover the third part of point 5.2 of the AQA A-level Biology specification which states that students should know the fate of pyruvate if respiration is only anaerobic. The lesson begins with a focus on the coenzyme, NAD, and students are challenged to recall details of its role in the oxidation of triose phosphate. Students will learn that oxidative phosphorylation in aerobic respiration allows these coenzymes to be reoxidised but that another metabolic pathway has to operate when there is no oxygen. Time is taken to go through the lactate and ethanol fermentation pathways and students are encouraged to discuss the conversions before applying their knowledge to complete diagrams and passages about the pathways. Understanding checks in a range of forms are used to enable the students to assess their progress whilst prior knowledge checks allow them to recognise the links to earlier topics. This lesson has been written to tie in with the other uploaded lesson on glycolysis
Astronomy REVISION (Topic 7 Edexcel GCSE Physics)
GJHeducationGJHeducation

Astronomy REVISION (Topic 7 Edexcel GCSE Physics)

(5)
This fully-resourced revision lesson has been designed to engage and motivate the students whilst they assess their understanding of the content in topic 7 (Astronomy) of the Pearson Edexcel GCSE Physics specification. The lesson has been written to include as many of the specification points as possible but the following have been given particular attention: Explain how the value of g differs between the Earth’s surface and the surface of other bodies in space Recall the bodies that are found in our Solar system Recall the names and order of the eight planets Describe evidence supporting the Big Bang theory Describe that there will be a change in the frequency and wavelength of a wave if the source of the wave is moving in relation to the observer Describe why the red-shift of galaxies provides evidence for the expansion of the Universe Describe the evolution of stars of similar mass to our Sun Describe the evolution of stars with a larger mass than our Sun This topic contains a number of principles or theories which can be poorly understood by students so extra time has been taken to guide them in the formation of descriptions and explanations.
Maintaining water and nitrogen balance in the body (AQA GCSE Biology)
GJHeducationGJHeducation

Maintaining water and nitrogen balance in the body (AQA GCSE Biology)

(5)
This fully-resourced lesson has been designed to cover the content of specification point 5.3.3 (Maintaining water and nitrogen balance in the body) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging and detailed PowerPoint (59 slides) and accompanying worksheets, which have been differentiated so that students of different abilities can access the work. The detail of the content and this resource means that it is likely to take more than 1 lesson to go through the tasks. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in good detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, prior knowledge checks make links to content from earlier topics such as homeostasis, osmosis and active transport. The following content is covered in this lesson: The importance of controlled water levels for cellular function The ways that water is lost and removed from the body The formation of urea by deamination Filtration of the blood by the kidney Selective reabsorption of useful molecules from the kidney to the blood The effect of ADH on the permeability of the tubules of the kidney Dialysis and transplant as possible treatment options for kidney failure As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the function of the nephron in more detail
Edexcel GCSE Biology Topic 3 REVISION (Genetics)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 3 REVISION (Genetics)

(4)
This is an engaging and fully-resourced revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Genetics) of the Edexcel GCSE Biology 9-1 specification. The specification points that are covered in this revision lesson include: Explain some of the advantages and disadvantages of asexual reproduction, including the lack of need to find a mate, a rapid reproductive cycle, but no variation in the population Explain some of the advantages and disadvantages of sexual reproduction, including variation in the population, but the requirement to find a mate Explain the role of meiotic cell division, including the production of four daughter cells, each with half the number of chromosomes, and that this results in the formation of genetically different haploid gametes Describe the structure of DNA Describe the genome as the entire DNA of an organism and a gene as a section of a DNA molecule that codes for a specific protein Explain how the order of bases in a section of DNA decides the order of amino acids in the protein and that these fold to produce specifically shaped proteins such as enzymes Describe the stages of protein synthesis, including transcription and translation Describe how genetic variants in the coding DNA of a gene can affect phenotype by altering the sequence of amino acids and therefore the activity of the protein produced Explain why there are differences in the inherited characteristics as a result of alleles Explain the terms: chromosome, gene, allele, dominant, recessive, homozygous, heterozygous, genotype, phenotype, gamete and zygote Explain monohybrid inheritance using genetic diagrams, Punnett squares and family pedigrees Describe how the sex of offspring is determined at fertilisation, using genetic diagrams Calculate and analyse outcomes (using probabilities, ratios and percentages) from monohybrid crosses and pedigree analysis for dominant and recessive traits Explain how sex-linked genetic disorders are inherited State that most genetic mutations have no effect on the phenotype The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Is this SYNTHESISED correctly” where they have to recognise whether a passage on protein synthesis is 100% correct or contains errors whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.