Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1127k+Views

1931k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Control of blood glucose concentration (AQA A-level Biology)
GJHeducationGJHeducation

Control of blood glucose concentration (AQA A-level Biology)

(0)
This fully-resourced lesson is highly detailed and in combination with the uploaded lesson on the causes of diabetes type I and II, it covers all of specification point 6.4.2 of the AQA A-level Biology specification which states that students should be able to describe the homeostatic control of blood glucose concentration using negative feedback mechanisms that release insulin or glucagon. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the AQA A-level Biology course and ties in with the already mentioned lesson on diabetes but also with the other uploaded lessons on topic 6 such as nerve impulses and kidney function
OCR A-level Biology Module 6.1.2 REVISION (Patterns of inheritance)
GJHeducationGJHeducation

OCR A-level Biology Module 6.1.2 REVISION (Patterns of inheritance)

(0)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 6.1.2 (Patterns of inheritance) of the OCR A-level Biology A specification. The topics tested within this lesson include: Genetic variation Monogenic inheritance Dihybrid inheritance Multiple alleles Sex linkage Codominance Epistasis Using the chi-squared test Discontinuous and continuous variation The Hardy Weinberg principle Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)
GJHeducationGJHeducation

Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)

(0)
This fully-resourced lesson covers the content of the first part of specification point 6.2.2 of the AQA A-level Biology specification that states that students should be able to describe the detailed structure of a cholinergic synapse and a neuromuscular junction and be able to compare the transmission across both of these structures. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters and drugs are considered so students are prepared to describe the differing effects on the synapse. The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The next part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. The final part of the lesson focuses on the NMJ and challenges the students to use the knowledge gained from earlier in the lesson to develop their understanding of these junctions. Time is taken to look at the structure of the sarcolemma to enable students to understand how the binding of the acetylcholine leads to the wave of depolarisation passing to the transverse tubules. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics. This lesson has been designed for students studying the AQA A-level Biology course but could be used with very able GCSE students who are keen to develop their understanding of synapses over and above the small detail that is provided at that level. This lesson also ties in nicely with the other uploaded lessons from topic 6
Osmosis
GJHeducationGJHeducation

Osmosis

(0)
A fully-resourced lesson that looks at the topic of osmosis and how the movement of water between a cell and the solution can affect the appearance of an animal and a plant cell. This lesson includes a detailed and engaging lesson presentation (42 slides) and differentiated worksheets that include exam questions that can be set as homework. There is a lot of key terminology associated with this topic and time is taken to ensure that students understand the meaning of each of these terms before moving forwards. Students are introduced to the different types of solutions and then a step-by-step guide is used to show them how to compare the water potential of the solution and the cell and then how this will determine which was water moves. The main task is differentiated so that students are challenged and can access the work. This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is also suitable for A-level students
Plant diseases
GJHeducationGJHeducation

Plant diseases

(0)
A really engaging and detailed lesson presentation (44 slides) and associated differentiated worksheets that looks at communicable diseases in plants and challenges students to diagnose these diseases in plants. During the lesson the students will take on the role of the “Treeage” (triage) nurse and have to direct each plant to the correct ward in the “CASUALTREE” according to the pathogen which has infected them. They will also have to explain how the symptoms which they have identified were caused and explain the future for this plant, during their time as the “Tree surgeon”. The three diseases included in the lesson are tobacco mosaic virus, crown gall disease and powdery mildew disease. There are regular progress checks throughout the lesson so that students can assess their understanding and there is a set homework included as part of the lesson. This lesson has been designed for GCSE students but is also suitable for A-level students looking at the communicable diseases topic
OCR A-level Biology Module 5.1.5 REVISION (Plant and Animal responses)
GJHeducationGJHeducation

OCR A-level Biology Module 5.1.5 REVISION (Plant and Animal responses)

(0)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 5.1.5 (Plant and animal responses) of the OCR A-level Biology A specification. The topics tested within this lesson include: Investigating tropisms The mammalian nervous system The brain Reflex actions Controlling heart rate Muscle Muscle contraction Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Inheritance of dominant and recessive alleles
GJHeducationGJHeducation

Inheritance of dominant and recessive alleles

(0)
A detailed lesson presentation and associated question worksheet which uses a step by step guide and numerous worked examples to show students how to draw genetic crosses to calculate offspring percentages. Before students are able to draw genetic diagrams, they need to understand and be able to use genetic terminology so this is the focus for the start of the lesson. Time is taken to go over the meaning of dominant and recessive alleles, genotypes and phenotypes. Moving forwards, students will be challenged to link genotypes to phenotypes for both dominant and recessive disorders and common misconceptions such as carriers in recessive disorders are explained. Finally, a 5 step guide is used to walk students through drawing genetic diagrams. Students are then given a chance to apply their new-found knowledge to questions about the inheritance of cystic fibrosis and polydactyly. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding. This lesson has been designed for GCSE students but is perfectly suitable for A-level students who are studying the topic of monogenic inheritance
Eukaryotic cells (Edexcel A-level Biology B)
GJHeducationGJHeducation

Eukaryotic cells (Edexcel A-level Biology B)

(1)
This fully-resourced lesson describes the ultrastructure of an eukaryotic cell and describes the relationship between the structure and function of the organelles. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 2.1 (v) of the Edexcel A-level Biology B specification As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all of the 10 topics in the Edexcel A-level B course and intricate planning has ensured that links are made to topic 1 and details are provided to link to the upcoming topics. A wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, will maintain motivation and engagement whilst covering the finer details of the following structures and organelles: nucleus nucleolus ribosomes rough endoplasmic reticulum Golgi apparatus lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane centrioles vacuole (+ tonoplast) chloroplasts cell wall As mentioned above, all of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to cover the work
Light-dependent reactions (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Light-dependent reactions (Pearson Edexcel A-level Biology A)

(0)
This lesson describes the light-dependent reactions of photosynthesis, focusing on the link to the light-independent reactions. The detailed PowerPoint and accompanying resources have been designed to cover the details included in point 5.7 of the Edexcel A-level Biology specification and therefore describes how light energy is trapped by exciting electrons in chlorophyll and the role of these electrons in generating ATP, reducing NADP in photophosphorylation and producing oxygen through photolysis of water. This is a topic which students tend to find difficult so this lesson has been intricately planned to walk them through each of the key reactions in the light-dependent stage. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as cell structure and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic fashion. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete
The Chloroplast & Photosynthesis (Edexcel A-level Biology A)
GJHeducationGJHeducation

The Chloroplast & Photosynthesis (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the relationship between the structure of the chloroplast and its role in the overall reaction of photosynthesis. The detailed PowerPoint and accompanying resources have been designed to cover points 5.5 & 5.9 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and provide a thorough introduction to the light-dependent and light-independent reactions which are covered in the next 3 lessons. Students will have some knowledge of photosynthesis from GCSE and were introduced to the ultrastructure of eukaryotic cells in topics 3 and 4 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled (or introduced) , a range of activities are used to ensure that key details are understood. As the main focus of the lesson is the reaction of photosynthesis, extra time is taken to introduce the details of the light-dependent and light-independent reactions that take place in the grana and stroma respectively. This includes descriptions of the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to GALP in the Calvin cycle of the light-independent reactions. Links to other related topics are also made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in topic 1) As described above, this lesson has been specifically planned to prepare students for the upcoming lessons that cover the details of specification points 5.7 & 5.8 (i) and (ii).
Enzymes and enzyme action
GJHeducationGJHeducation

Enzymes and enzyme action

(0)
An engaging and detailed lesson presentation (53 slides) and associated worksheets that looks at the properties and functions of enzymes and explores how the rate of enzyme-controlled reactions changes with changes in conditions. The lesson begins by using a quick quiz competition to introduce the key terms of active site and substrate. Diagrams accompany the important descriptions so that students can visualise how enzymes are specific to a single substrate and will form enzyme-substrate complexes with only them. Emil Fischer’s lock and key hypothesis is briefly discussed so that the correlation between the hypothesis and key terms can be made. Students are shown how most enzymes or groups of enzymes can be named by remembering two rules and they will be tested on this through a second competition. At this point, a progress check is used to allow the students to assess their understanding and ability to bring the information together for enzyme function. The rest of the lesson looks at how changing the temperature and pH will affect the rate of an enzyme controlled reaction. Students will meet the graph shapes that accompany both of these factors and then are helped with the explanation of the trend which is normally poorly done in exam questions. This lesson has been designed for GCSE students.
OCR Gateway A GCSE Biology B6 (Global challenges) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Biology B6 (Global challenges) REVISION

(0)
This engaging lesson presentation (57 slides) and associated worksheets uses exam questions with displayed mark schemes, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module B6 of the OCR Gateway A GCSE Biology specification. The topics which are specifically tested within the lesson include: Genetic engineering, Health and disease, Spread of communicable diseases and preventing the spread, Non-communicable diseases, Treating CVD, Monoclonal antibodies and Modern advances in medicine Students will enjoy the competitions such as "Is this ENGINEERED correctly" and "From NUMBERS 2 LETTERS" whilst crucially being able to recognise those areas which need their further attention
Non-communicable diseases
GJHeducationGJHeducation

Non-communicable diseases

(0)
An informative lesson presentation (38 slides) that looks at a range of non-communicable diseases and also explores how risk factors can increase the chances of an individual having one of these diseases. The lesson begins by looking at CHD so that students can recognise that this is a non-communicable disease and check on their understanding of this key term. Moving forwards, a step by step question and answer format is used to show students how to form a long answer. Key terminology such as thrombosis and atherosclerosis are introduced using quick quiz competitions which act to maintain the engagement. The rest of the lesson focuses on a range of risk factors for cardiovascular diseases and time is taken to deepen knowledge of the human anatomy by challenging students to link the names of arteries to the organs that they supply. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be addressed. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
AQA GCSE Combined Science Paper 1 REVISION (Biology topics B1 - B4)
GJHeducationGJHeducation

AQA GCSE Combined Science Paper 1 REVISION (Biology topics B1 - B4)

(0)
This is a fully-resourced REVISION lesson that consists of an engaging PowerPoint (154 slides) and associated worksheets that challenge the students on their knowledge of topics B1 - B4 (Cell Biology, Organisation, Infection and response and Bioenergetics) of the AQA GCSE Combined Science Trilogy specification and can be assessed on PAPER 1. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content that can be assessed in paper, but the following sub-topics have been given particular attention: Eukaryotic and prokaryotic cells Structure of a bacterium The functions of the components of blood Specialised cells Active transport Osmosis Structure of DNA Mitosis and the cell cycle Functions of the organelles of animal and plant cells Electron microscopy Calculating size Arteries and veins The risk factors of CHD CHD treatments The structure of the heart Bacterial, fungal and viral diseases The mathematic elements of the Combined Science specification are challenged throughout the resource. Due to the size of this resource, it is likely that teachers will choose to use it over the course of a number of lessons and it is suitable for use in the lead up to the mocks or in the lead up to the actual GCSE exams.
Genetic engineering (OCR A-level Biology)
GJHeducationGJHeducation

Genetic engineering (OCR A-level Biology)

(0)
This extensive and fully-resourced lesson describes the principles and explains the techniques used in the production of recombinant DNA in genetic engineering. Both the engaging PowerPoint and accompanying resources have been written to cover points 6.1.3 (f) (i & ii) of the OCR A-level Biology A specification. The lesson begins with a definition of genetic engineering and recombinant DNA to allow students to begin to understand how this process involves the transfer of DNA fragments from one species to another. Links are made to the genetic code and transcription and translation mechanisms, which were met in module 2, in order to explain how the transferred gene can be translated in the transgenic organism. Moving forwards, the method involving reverse transcriptase and DNA polymerase is introduced and their knowledge of the structure of the polynucleotides and the roles of enzymes is challenged through questions and discussion points. Restriction enzymes are then introduced and time is taken to look at the structure of a restriction site as well as the production of sticky ends due to the staggered cut on the DNA. A series of exam-style questions with displayed mark schemes are used to allow the students to assess their current understanding. The second half of the lesson looks at the culture of transformed host cells as an in vivo method to amplify DNA fragments. Students will learn that bacterial cells are the most commonly transformed cells so the next task challenges their recall of the structures of these cells so that plasmid DNA can be examined from that point onwards. The following key steps are described and explained: • Remove and prepare the plasmid to act as a vector • Insert the DNA fragment into the vector • Transfer the recombinant plasmid into the host cell • Identify the cells which have taken up the recombinant plasmid • Allow the transformed host cells to replicate and express the novel gene Time is taken to explore the finer details of each step such as the addition of the promoter and terminator regions, use of the same restriction enzyme to cut the plasmid as was used to cut the gene and the different types of marker genes. As well as understanding and prior knowledge checks, quick quiz competitions are used throughout the lesson to introduce key terms such as cDNA and EcoR1 in a memorable way.
AQA GCSE Biology Paper 2 REVISION (Topics B5-B7)
GJHeducationGJHeducation

AQA GCSE Biology Paper 2 REVISION (Topics B5-B7)

(0)
This is a highly-detailed revision resource which has been designed to be used over a number of lessons and allows teachers to dip in and out of the material as fits to the requirements of their classes and students. The resource consists of an engaging and detailed powerpoint (132 slides) and worksheets which have been differentiated to allow students of differing abilities to be challenged and access the work. The lesson consists of a wide range of activities which will engage and motivate the students and includes exam questions, quiz competitions and quick tasks. The mathematical element of the course is challenged throughout the lesson The lesson has been designed to cover as many of the sub-topics within topics 5, 6 and 7 of the AQA GCSE Biology specification, and will be covered in paper 2, but the following sub-topics have been given particular attention: Topic B5: Homeostasis and response IVF The central nervous system The structure and functions of the eye Diabetes Control of blood glucose concentration Topic B6: Inheritance, variation and evolution The structure and function of DNA Mutations and their effects on phenotypes Genetic terminology Inherited disorders Classification Topic B7: Ecology Ecological terms The Carbon cycle This revision resource can be used in the lead up to mocks or the actual GCSE exams and due to its size, it could be repeatably used to ensure that students develop a deep understanding of these topics.
AQA GCSE Biology Unit B5 (Homeostasis and response) REVISION
GJHeducationGJHeducation

AQA GCSE Biology Unit B5 (Homeostasis and response) REVISION

(0)
An engaging lesson presentation (88 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B5 of the AQA GCSE Biology specification. The topics that are tested within the lesson include: Homeostasis Structure and function of the nervous system Control of body temperature Human endocrine system Control of blood glucose concentration Maintaining water balance in the body Hormones in human reproduction Contraception The use of hormones to treat infertility Negative feedback Students will be engaged through the numerous activities including quiz rounds like "Have they got the right BALANCE?" and "Take the IVF Hotseat" whilst crucially being able to recognise those areas which need further attention
OCR Gateway A GCSE Biology B4 (Community-level systems) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Biology B4 (Community-level systems) REVISION

(0)
This engaging lesson presentation (58 slides) and associated worksheets uses exam questions with displayed mark schemes, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module B4 of the OCR Gateway A GCSE Biology specification. The topics which are specifically tested within the lesson include: Ecosystems, Competition and interdependence, Pyramids of biomass, Efficiency of biomass transfer, The carbon cycle and Decomposers Students will enjoy the competitions such as "Number CRAZY" and "Take the HOTSEAT" whilst crucially being able to recognise those areas which need their further attention
Cardiac cycle & ECG traces (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cardiac cycle & ECG traces (Edexcel A-level Biology B)

(0)
This detailed lesson describes the pressure changes that occur during the cardiac cycle and explains how ECG traces can be interpreted. The PowerPoint and accompanying resources have been designed to cover points 4.4 (iii) & (v) of the Edexcel A-level Biology B specification and focuses on the importance of the valves in ensuring unidirectional movement of blood during the cycle. The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. The remainder of the lesson focuses on the ECG and explains how these traces can be interpreted to diagnose heart problems. A quiz competition is used to introduce the reference points of P, QRS and T on a normal sinus rhythm before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem.
The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)
GJHeducationGJHeducation

The roles of MAMMALIAN SENSORY RECEPTORS (OCR A-level Biology A)

(0)
This is a detailed lesson resource that covers the content of point 5.1.3 (a) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their understanding of the roles of mammalian sensory receptors. There is a particular focus on the Pacinian corpuscle to demonstrate how these receptors act as transducers by converting one form of energy into electrical energy which is then conducted as an electrical impulse along the sensory neurone. The lesson begins by looking at the different types of stimuli that can be detected. This leads into a written task where students have to form sentences to detail how thermoreceptors, rods and cones, hair cells in the inner ear and vibration receptors in the cochlea convert different forms of energy into electrical energy. Students will be introduced to the term transducer and will be challenged to work out what these cells carry out by using their sentences. As stated above, students will meet a Pacinian corpuscle and learn that this receptors detects pressure changes in the skin using the concentric rings of connective tissue in its structure. The rest of the lesson focuses on how ions are involved in the maintenance of resting potential and then depolarisation. Time is taken to look into the key details of these two processes so students are confident with this topic when met again during a lesson on the generation of action potentials. All of the tasks are differentiated to allow students of different abilities to access the work. As well as understanding checks to allow the students to assess their progress against the current topic, there are also a number of prior knowledge checks on topics like inorganic ions and methods of movement. This lesson has been designed for students studying the OCR A-level Biology course