A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more.
The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”.
The following mathematical skills (in a scientific context) are covered in this lesson:
The use of Avogadro’s constant
Rearranging the formula of an equation
Calculating the amount in moles using mass and relative formula mass
Calculating the relative formula mass for formulae with brackets
Using the Periodic Table to calculate the number of sub-atomic particles in atoms
Changes to electrons in ions
Balancing chemical symbol equations
Converting between units
Calculating concentration in grams per dm cubed and volumes of solutions
Calculating size using the magnification equation
Using the mean to estimate the population of a sessile species
Calculating percentages to prove the importance of biodiversity
Calculating percentage change
Calculating the acceleration from a velocity-time graph
Recalling and applying the Physics equations
Understanding prefixes that determine size
Leaving answers to significant figures and using standard form
Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance.
Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Each of the 9 revision lessons included in this bundle are fully-resourced and have been designed to engage and motivate the students whilst they assess their knowledge of the CIE IGCSE Chemistry specification. The PowerPoints and accompanying resources use a range of activities which include exam-style questions with fully explained answers, differentiated tasks and quiz competitions to challenge the students on the following topics:
Topic 2: Experimental techniques
Topic 3: Atoms, elements and compounds
Topic 4: Stoichiometry
Topic 5: Electricity and Chemistry
Topic 6: Chemical energetics
Topic 7: Chemical reactions
Topic 9: The Periodic Table
Topic 11: Air and water
Topic 14: Organic Chemistry
The lessons will keep students thoroughly engaged during revision periods whilst enabling them to identify the areas of the specification which require further attention.
If you would like to see the quality of the lessons, download the topic 4 and 9 lessons as these have been shared for free
This bundle of 11 lessons covers a lot of the content in Topic P4 (Waves and radioactivity) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Waves and their properties
Wave velocity
Reflection and Refraction
EM waves
Uses of EM waves
Isotopes
Radiation properties
Decay equations
Half-life
Background radiation
Dangers of radioactivity
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way
This lesson has been designed for GCSE students but is suitable for KS3
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within TOPIC 9 (Chemistry of the atmosphere) of the AQA GCSE Chemistry specification (specification point C4.9).
The topics that are tested within the lesson include:
The proportion of different gases in the atmosphere
The Earth’s early atmosphere
Greenhouse gases
Atmospheric pollutants
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
This is a detailed and engaging lesson presentation (59 slides) that combines exam questions and progress checks along with quiz competition rounds to enable students to assess their understanding of the specification content within topics C1 - 3 of the OCR GCSE Combined Science Gateway A 9 - 1 as can be assessed in Paper 3.
All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained.
The revision rounds in the competition include “The need to BALANCE”, “Number crazy” and “React to the REACTION”.
This lesson has been designed for GCSE students.
This fully-resourced lesson with differentiated resources has been written to prepare students for the range of mathematical-based questions they may face on the two Edexcel GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding.
The mathematical skills covered in this lesson include:
Calculating the number of sub-atomic particles in atoms and ions
Writing chemical formulae for ionic compounds
Identifying isotopes
Calculating the relative atomic mass using isotope mass and abundance
Using Avogadro’s constant to calculate the number of particles
Calculating the relative formula mass
Calculating amount in moles using the mass and the relative formula mass
Balancing chemical symbol equations
Calculating reacting masses
Gas calculations using molar volume
Calculating concentration of solutions
Titration calculations
Deducing the empirical formula
Calculating energy changes in reactions
Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions
This lesson could be used with higher ability students on the Edexcel GCSE Combined Science course by taking out the sections which are not applicable.
A fully-resourced lesson which includes a lesson presentation (24 slides) and a worksheet which is differentiated so that students can judge their understanding of the topic of writing half equations for electrolysis and access the work accordingly. The lesson uses worked examples and helpful hints to show the students how to write half equations at both the cathode and anode. Time is taken to remind students about the rules at the electrodes when the electrolyte is in solution so that they can work out the products before writing the equations.
This lesson has been designed for GCSE students (14 - 16 years old in the UK) but could be used with older students.
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways.
The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning.
This lesson has been written for GCSE students
An engaging lesson presentation (64 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Chemistry specification.
The topics that are tested within the lesson include:
Relative formula mass
Empirical formula
Pure and impure substances
Separation methods
Electronic structures
Forming ions
Ionic compounds
Simple molecules
Giant covalent substances
Carbon
Nanoparticles
Students will be engaged through the numerous activities including quiz rounds like “SEPARATE the fact from the fiction” and “Higher or Lower” whilst crucially being able to recognise those areas which need further attention
A concise lesson presentation (19 slides) which looks at meaning of the key term, polymers, and briefly explores addition and condensation polymers. The lesson begins with a fun exercise to enable students to come up with the word polymers so that they can be introduced to the definition and then relate this to another term, monomers. A quiz competition is used to introduce addition and condensation polymers. Students are shown the displayed formulae and names of a few addition polymers and then challenged to use this to name and draw some others. They will then learn how DNA is an example of a condensation polymer. A set homework is included in the lesson which gets students to research thermosetting and thermosoftening polymers
An engaging lesson presentation (63 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Chemistry unit C3 (Quantitative chemistry) of the AQA GCSE Combined Science specification (specification point C5.3). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to recognise whether to use Avogadro’s constant or the moles formula in a moles calculation question.
The topics that are tested within the lesson include:
Conservation of mass and balanced symbol equations
Relative formula mass
Mass changes when a reactant or product is a gas
Moles
Amounts of substances in equations
Concentration of solutions
Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY” and “Are you on FORM” whilst crucially being able to recognise those areas which need further attention
This REVISION resource has been designed to motivate and engage students whilst they are challenged on their knowledge of the content in topics C1-C5 of the AQA GCSE Chemistry specification which can be assessed on PAPER 1. This is fully-resourced and contains a detailed PowerPoint (208 slides) and accompanying worksheets, some of which have been differentiated.
The resource was written with the aim of covering as many of the sub-topics in C1-C5 as possible, but the following ones have been given a particular focus:
The chemical properties of the Group 1, 7 and 0 elements
The structure of atoms and ions
The properties of ionic compounds
Drawing dot and cross diagrams to represent ionic compounds
Extracting metals using carbon
REDOX reactions
Electrolysis of molten salts and solutions
Neutralisation reactions
Writing balanced chemical symbol equations
Simple and giant covalent structures
Diamond and graphite
Calculating the relative formula mass
Moles and Avogadro’s constant
Calculating the mass in reactions
Molar volume (Gas calculations)
Concentration of solutions
The organisation of the Periodic Table
Due to the extensiveness of this resource, it is likely to be used over the course of a number of lessons with a particular class and this allows the teacher to focus in on any sub-topics which are identified as needing more time.
This is a fully-resourced lesson which includes an engaging and detailed lesson presentation and differentiated worksheets that together guide students through the key details of endothermic and exothermic reactions. This lesson has been designed for GCSE students but could be used with students entering this topic at A-level who are looking for a recap on the key details.
This lesson focuses on a few critical areas of these reactions and those which are often poorly understood. For example, considerable time is taken to ensure that students understand how energy is taken in to break bonds in a reaction and given out when bonds are formed. From this basis, they learn to compare the amount of energy taken in with the amount given out and ultimately determine whether it is an endothermic or exothermic reaction. The format of the lesson is that students are guided through the combustion of methane as an exothermic reaction and shown how to draw reaction profiles and calculate energy changes using the bond energies to prove it is that type of reaction. Having worked with the teacher and each other on this reaction, students are then challenged to bring their skills together to describe, explain and represent an endothermic reaction. If students feel that they will need some assistance on this task, the worksheet has been differentiated so they can still access the learning. There are a number of quick competitions written into the lesson to maintain engagement and also progress checks are found at regular intervals so students can constantly assess their understanding. The lesson finishes with a final game called The E factor which tests the students knowledge from across the whole lesson.
A fully-resourced lesson that includes a lesson presentation (20 slides) and a differentiated worksheet. The lesson uses a step-by-step method to guide students through the process of writing net ionic equations. Students will learn the meaning of a spectator ion and be able to identify them within an equation so that they can be removed when writing the final net ionic equation. The lesson focuses on writing these equations for neutralisation and precipitation reactions, with the former being a very common question in assessments.
This lesson has been written for GCSE students (14 - 16 year olds)
This bundle of 20 fully-resourced lessons have been designed to allow students who are studying the AQA GCSE Combined Science course to assess their understanding of the topics found within the following units of the specification:
B1: Cell Biology
B2: Organisation
B4: Bioenergetics
B5: Homeostasis and response
B6: Inheritance, variation and evolution
B7: Ecology
C1: Atomic structure and the periodic table
C2: Bonding, structure and properties of matter
C3: Quantitative chemistry
C4: Chemical changes
C5: Energy changes
C6: The rate and extent of chemical change
C7: Organic chemistry
C8: Chemical analysis
C9: Chemistry of the atmosphere
P1: Energy
P2: Electricity
P4: Atomic structure
P5: Forces
P6: Waves
These lessons use a range of exam questions, understanding checks, quick tasks and quiz competitions to engage and motivate the students
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick differentiated tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic C2 (Inorganic chemistry) of the Edexcel iGCSE Chemistry specification which has its’ first assessment in 2019.
The topics that are tested within the lesson include:
Group 1 (alkali metals)
Group 7 (halogens)
Gases in the atmosphere
Reactivity series
Extraction and uses of metals
Acids, alkalis and titrations
Chemical tests
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual assessment. The detail of this lesson means that it could be used over a number of lessons at school so that each topic is covered in sufficient depth.
This bundle of 6 revision lessons challenges the students on their knowledge of the content of all of the topics that are detailed in the Edexcel GCSE Combined Science specification and can be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics.
The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content.
If you would like to see the quality of these lessons, download the paper 2, 4 and 6 revision lessons as these have been shared for free
This bundle of 7 revision lessons covers the content in the following topics of the Edexcel GCSE Chemistry specification
Topic 1: Key concepts in Chemistry
Topic 3: Chemical changes
Topic 5: Separate chemistry 1
Topic 6: Groups in the Periodic Table
Topic 7: Rates of reaction and energy changes
Topic 8: Fuels and Earth Science
Topic 9: Separate Chemistry 2
These lessons use a range of activities which include exam questions with fully explained answers, differentiated tasks and engaging quiz competitions to enable the students to assess their understanding of the different topics and crucially to recognise those areas which need further attention.
A concise lesson presentation (20 slides) that looks at how the collision theory is related to the rate of reaction. This is a short lesson that would be taught at the beginning of the topic that looks at the rate of reaction and the factors that affect the rate. Students are challenged with a quick competition that gets them to recognise keywords which are involved in the collision theory. Some time is then taken to focus on "activation energy" and how this is shown on a reaction profile. Finally, students will use their keywords to form a clear definition for the collision theory which includes its link to the rate of reaction so this can be used in the upcoming lessons
This lesson has ultimately been designed for GCSE students but can be used with all age groups as an introduction to the topic