A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A fully resourced lesson, which includes differentiated worksheets, and guides the students through the process of extracting aluminium. There are close links throughout the lesson to the reactivity series and electrolysis so that the students are able to understand how the knowledge of all of these is brought together. Students will meet cryolite and recognise why this is used in the process and will finish off by writing half equations to show the products at the electrodes.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK)
A fully-resourced lesson that looks at a number of the allotropes of carbon which need to be known for GCSE Science. The lesson includes an engaging lesson presentation (40 slides) and associated worksheets. The lesson begins by recalling the definition of an allotrope. Students are then introduced to graphene and will understand how this is related to graphite and know the properties of these two materials that are shared. Time is taken to ensure that students can explain why graphene is able to conduct electricity. Moving forwards, students will meet the family of allotropes known as the fullerenes and will see some important details about a few of these.
This lesson has been written for students studying GCSE (14 - 16 year olds in the UK).
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the sub-topics found within Topic C9 (Separate chemistry 2) of the Edexcel GCSE Chemistry specification.
The sub-topics and specification points that are tested within the lesson include:
Describe flame tests to identify cations in solids or solutions
Describe tests and identify anions in solids or solutions
Recall the formulae of the molecules of alkanes and alkenes
Explain why the alkanes and alkenes are described as the saturated and unsaturated hydrocarbons respectively
Explain how bromine water is used to distinguish between alkanes and alkenes
Describe how the complete combustion of alkanes and alkenes leads to the production of carbon dioxide and water
Recall that a polymer is made up of repeating units
Recall the formulae of the carboxylic acids and alcohols
Know the functional groups of these homologous series
Compare the sizes of nanoparticles with atoms and molecules
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
A fully resourced lesson presentation (53 slides) and associated worksheet that uses a combination of exam questions, understanding checks, quick tasks and a quiz competition to help the students to assess their understanding of the topics found within TOPIC 5 (Energy changes) of the AQA GCSE Chemistry specification (specification point C4.5). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to use the energy change in a chemical reaction to work out if it is an endothermic or exothermic reaction.
The topics that are tested within the lesson include:
Endothermic and exothermic reactions
Reaction profiles
Calculating energy changes in reactions
Fuel cells
Students will be engaged through the numerous activities including a summary round called “E NUMBERS” which requires them to use all of their knowledge to work out the type of reactions that are shown.
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 14 (Organic chemistry) of the CIE IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers.
The specification points that are covered in this revision lesson include:
CORE
Name and draw the structures of methane, ethane, ethene, ethanol, ethanoic acid and the products of their reactions
State the type of compound present, given a chemical name ending in -ane, -ene, -ol, or -oic acid or a molecular structure
Describe petroleum as a mixture of hydrocarbons and its separation into useful fractions by fractional distillation
Describe the properties of molecules within a fraction
Describe the concept of homologous series as a ‘family’ of similar compounds with similar chemical properties due to the presence of the same functional group
Describe the properties of alkanes
Describe the bonding in alkanes
Describe the manufacture of alkenes and of hydrogen by cracking
Distinguish between saturated and unsaturated hydrocarbons:
Define polymers as large molecules built up from small units (monomers)
SUPPLEMENT
Name and draw the structures of the unbranched alkanes, alkenes (not cis-trans), alcohols and acids containing up to four carbon atoms per molecule
Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms
Recall that the compounds in a homologous series have the same general formula
Understand that different polymers have different units and/or different linkages
Describe the structure of proteins
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Are you on FORM” where they compete to be the 1st to name an organic compound from its formula whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
An engaging lesson presentation (42 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within TOPIC 6 (The rate and extent of chemical change) of the AQA GCSE Chemistry specification (specification point C4.6)
The topics that are tested within the lesson include:
Calculating rates of reactions
Factors that affect the rate of a reaction
Collision theory
Reversible reactions
Equilibrium
Changing the equilibrium position
Students will be engaged through the numerous activities including quiz rounds like “Don’t get iRATE” and “Under PRESSURE” whilst crucially being able to recognise those areas which need further attention
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 6 (Chemical energetics) of the Cambridge IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers.
The specification points that are covered in this revision lesson include:
CORE
Describe the meaning of exothermic and endothermic reactions
Interpret energy level diagrams showing exothermic and endothermic reactions
Describe the release of heat energy by burning fuels
State the use of hydrogen as a fuel
SUPPLEMENT
Describe bond breaking as an endothermic process and bond forming as an exothermic process
Draw and label energy level diagrams for exothermic and endothermic reactions using data provided
Calculate the energy of a reaction using bond energies
Describe the use of hydrogen as a fuel reacting with oxygen to generate electricity in a fuel cell.
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “E NUMBERS” where they have to recognise the differences between endothermic and exothermic reactions whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
A fully-resourced lesson which guides students through drawing, writing and recognising the electronic configurations of atoms and ions. The lesson includes an engaging lesson presentation (33 slides), an associated worksheet and a competition worksheet.
The lesson begins by introducing the students to the number of electrons that can be held on the first three electron shells. They are then shown how to draw an electronic configuration and write this in brackets form. Students are given the opportunity to apply this knowledge by drawing the configuration of first 20 elements of the Periodic Table. Moving forwards, students are guided to enable them to discover how the electron configuration is linked to the position of an atom in the Periodic Table. The remainder of the lesson focuses on ions and how the configuration of these substances can be recognised. Some time is taken to explain how ions are formed from atoms and the lesson finishes with a competition which challenges students to identify atoms or ions from their configurations to form a word. There are regular progress checks throughout the lesson to allow the students to check on their understanding and a range of quiz competitions to maintain engagement.
This lesson has been written for GCSE students but could be used with younger students, especially the initial part of the lesson on atoms and the link to the Periodic Table
A fully-resourced lesson which guides students through using moles to calculate the mass of a substance in a reaction. The lesson includes a detailed lesson presentation (22 slides) and associated worksheets which are used to check the skills and understanding of the students.
The lesson begins by introducing the students to the three steps involved in a calculating mass question. These skills include calculating the relative formula mass and identifying molar ratios in equations to calculate amounts so time is taken to recap on how this is done before students are given the opportunity to try some progress check questions. A worked example brings these three steps together to guide the students to the final answer. The final task involves 4 questions where students are challenged to apply their new-found knowledge.
This lesson has been written for GCSE students (14 - 16 year olds in the UK)
A fully-resourced lesson which looks at the chemical reaction of cracking and the conditions that are needed for this reaction on both an industrial scale and in a laboratory. The lesson includes an engaging lesson presentation (33 slides) and an associated worksheet containing questions for a progress check.
The lesson begins by challenging the students to use their knowledge of alkanes and a given example to work out the name of a 6, 7 and 8 carbon alkane. Students need to be able to name the alkanes and alkenes in order to understand the products of a cracking reaction. A number of quiz competitions are used to introduce both the name of the reaction but also the temperature that is needed when it is carried out on an industrial scale. Students will then be shown a diagram of a cracking experiment in a laboratory so they can discover that a catalyst is also needed. Students will learn, either through carrying out the experiment or through the informative slide, that the product of a cracking reaction is a smaller alkane molecule and a smaller alkene molecule. Time is taken to go back over the meaning of saturated and unsaturated and once the students have been introduced to bromine water, they are challenged to work out what the respective reactions will be when it is added to an alkane and an alkene. The remainder of the lesson focuses on writing word and chemical symbol equations for a cracking reaction. Students will be shown how the second product of a reaction can be worked out when the reactant and first product are provided and then they challenge themselves by trying to write three equations. Understanding checks are written into the lesson at regular places to allow the students to check on their understanding.
This lesson has been designed for GCSE students.
An informative lesson presentation (24 slides), accompanied by a set of differentiated question worksheets, which together guide students through calculating energy changes in reactions and then challenges them to apply their new-found knowledge. The lesson begins by asking the students to complete a sentence which details how energy is taken in to break bonds in the reactants and given out when bonds are formed in the products. The bond energy table is then introduced so that students understand how it will be used in questions. Moving forwards, a step by step guide is used to calculate the energy change value for two reactions and students are shown how to interpret the positive or negative result as endothermic or exothermic respectively. The remainder of the lesson asks the students to apply what they have learnt to calculate the energy change for two more reactions. This question worksheet is differentiated two ways so that students who need extra assistance can still access the work.
This lesson has been designed for GCSE students
An engaging lesson presentation (64 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Chemistry specification.
The topics that are tested within the lesson include:
Relative formula mass
Empirical formula
Pure and impure substances
Separation methods
Electronic structures
Forming ions
Ionic compounds
Simple molecules
Giant covalent substances
Carbon
Nanoparticles
Students will be engaged through the numerous activities including quiz rounds like “SEPARATE the fact from the fiction” and “Higher or Lower” whilst crucially being able to recognise those areas which need further attention
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within TOPIC 9 (Chemistry of the atmosphere) of the AQA GCSE Chemistry specification (specification point C4.9).
The topics that are tested within the lesson include:
The proportion of different gases in the atmosphere
The Earth’s early atmosphere
Greenhouse gases
Atmospheric pollutants
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 5 (Electricity and Chemistry) of the Cambridge IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers.
The specification points that are covered in this revision lesson include:
CORE
Define electrolysis as the breakdown of an ionic compound, molten or in aqueous solution, by the passage of electricity
Describe the electrode products and the observations made during the electrolysis of a range of electrolytes
State the general principle that metals or hydrogen are formed at the negative electrode (cathode), and that non-metals (other than hydrogen) are formed at the positive electrode (anode)
Predict the products of the electrolysis of a specified binary compound in the molten state
Describe the reasons for the use of copper and (steel-cored) aluminium in cables,
SUPPLEMENT
Relate the products of electrolysis to the electrolyte and electrodes used
Describe electrolysis in terms of the ions present and reactions at the electrodes in the examples given
Predict the products of electrolysis of a specified halide in dilute or concentrated aqueous solution
Construct ionic half-equations for reactions at the cathode
Describe, in outline, the manufacture of aluminium from pure aluminium oxide in molten cryolite and chlorine, hydrogen and sodium hydroxide from concentrated aqueous sodium chloride
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Have you got the SOLUTION” where they have to compete to be the 1st to name the products at the electrodes whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
This is a fully-resourced lesson that looks at how the atomic number and electron configuration of an atom can be used to place an element in the Periodic Table. This lesson has primarily been designed for GCSE-aged students but can be used with younger students who are studying the Table and know about electron configurations.
The lesson begins by looking at the atomic number and ensuring that students recall how this number can be used to identify the number of protons (and electrons) in an atom. Time is taken to link to Dmitri Mendeleev and how he used the atomic number in his original formatting. Moving forwards, students will be challenged to write the electron configurations for a number of atoms from group 2 and then to identify the connection between the number of electrons in the outer shell and the group number. Again, time is taken to make links to other related topics such as the alkali metals, halogens and noble gases and how their chemical properties are similar based on this outer shell number. Students will discover how the period number is linked to the number of occupied shells. The remainder of the lesson uses two understanding checks to challenge the students to bring together their knowledge to place an element in the correct place in a blank Periodic Table when given information about the atomic number or electron configuration.
A fully resourced lesson which includes an informative lesson presentation (25 slides) and an associated worksheet that show students how to give answers to a certain number of significant figures. The answers to questions in Science are often required to be given in significant figures and this lesson guides students through this process, including the rules of rounding that must be applied for success to be likely.
This lesson has been designed for GCSE students but is suitable for KS3
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Chemical changes) of the Edexcel GCSE Chemistry specification.
The specification points that are covered in this revision lesson include:
Recall that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide ions
Recall that the higher the concentration of hydrogen ions in an acidic solution, the lower the pH; and the higher the concentration of hydroxide ions in an alkaline solution, the higher the pH
Recall that as hydrogen ion concentration in a solution increases by a factor of 10, the pH of the solution decreases by 1
Recall that a base is any substance that reacts with an acid to form a salt and water only
Recall that alkalis are soluble bases
Explain the general reactions of aqueous solutions of acids with metals, metal oxides, metal hydroxides and metal carbonates to produce salts
Describe the chemical test for hydrogen and carbon dioxide
Describe a neutralisation reaction as a reaction between an acid and a base
Explain an acid-alkali neutralisation as a reaction in which hydrogen ions (H+) from the acid react with hydroxide ions (OH–) from the alkali to form water
Explain how a soluble salts is prepared from an acid and an insoluble reactant
Explain how soluble salts are prepared from an acid and a soluble reactant
Recall that electrolytes are ionic compounds in the molten state or dissolved in water
Explain the movement of ions during electrolysis
Explain the formation of the products in electrolysis
Write half equations for reactions occurring at the anode and cathode in electrolysis
Explain oxidation and reduction in terms of loss or gain of electrons
The students will thoroughly enjoy the range of activities, which includes quiz competitions like “From NUMBERS 2 LETTERS” where they compete to be the 1st to get the abbreviation Oil Rig whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
This is an engaging lesson which uses a range of tasks and quiz competitions to ensure that the important details about elements are embedded so that students can use them in related Chemistry topics. The lesson begins by looking at the chemical symbols that are used with the elements. Students do not have to know the symbols off by heart because of the widely available Periodic Table but a sound knowledge will always help going forward. Time is taken to ensure that students understand how the symbols have to be written so that those with two letters consist of a capital and a lower case letter. In a race against each other, students are challenged to complete a crossword by converting symbols to the name of elements. This will result in a winner, a second placed and a third placed student who can be given a gold, silver and bronze medal. The atoms within each of these medals is explored so that students can learn that the gold and silver medals will only be made up of one type of atom and are therefore elements whilst the bronze is an alloy. The remainder of the lesson looks at some of the uses of the different elements and a homework task gets students to put this into written form.
This lesson is suitable for both KS3 and GCSE students.
A fully resourced lesson, which includes an informative lesson presentation (22 slides) and differentiated worksheets that guide students through the topic of balancing symbol equations. The lesson takes the students through the steps involved and begins by getting them to be able to recognise when an equation is balanced or not. The difficulty of the equations to be balanced increases as the lesson progresses and students are given helpful hints to aid their progress.
This lesson is suitable for both KS3 and GCSE students
This is an engaging and informative lesson that looks at the group of unsaturated hydrocarbons known as the alkenes and focuses on a few properties, their displayed and chemical formulae and identification. This lesson has been designed for GCSE students and works nicely with the “alkanes” lesson as students can use learning from both lessons.
The lesson begins by ensuring that students recognise a key difference between the alkenes and the alkanes in terms of the carbon-carbon bond. This shows them that there is no such substance as methane. They are guided through the rules of drawing alkenes, with examples of ethene and propene used so that they can then apply this technique to draw butene. Working together with the teacher, they will be able to write the general formula that connects this group of substances. The rest of the lesson focuses on the term unsaturated and how this affects them in terms of the identification test with bromine water as well reactions with hydrogen. The lesson finishes by getting students to recognise a use of ethene in making the alcohol, ethanol.