A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This lesson has been written for GCSE students and aims to ensure that they can explain in detail why light changes direction due to refraction. The key to the explanation is the use of the correct terms in context so the start of the lesson challenges the students to come up with the key words of light, bend, normal, density and speed when given a range of clues. The next part of the lesson works with the students to bring these key terms together to form a definition of refraction. Moving forwards, the relationship between density of a medium and the speed of light through that medium is discussed so that there is a clear understanding of why light bends one way or the other. The next task uses the definition to apply to a practical situation to draw a diagram of light moving from air to glass. The final part of the lesson involves a range of practicals so this topic can be explored further.
A fully-resourced lesson which focuses on using the kinetic energy equation to calculate energy, mass and speed. The lesson includes a lesson presentation (23 slides) which guides students through the range of calculations and accompanying worksheets which are differentiated. The lesson begins with the students being drip fed the equation so they are clear on the different factors involved. They are challenged to predict whether increasing the mass or increasing the speed will have a greater effect on the kinetic energy before testing their mathematical skills to get results to support their prediction. Moving forwards, students are shown how to rearrange the equation to make the mass the subject of the formula so they can use their skills when asked to calculate the speed. The final task of the lesson brings all of the learning together to tackle a set of questions of increasing difficulty. These questions have been differentiated so that students who need extra assistance can still access the learning.
This lesson has been written for GCSE students
An informative lesson which guides students through the commonly misunderstood topic of drawing free body diagrams and using them to calculate resultant forces. The lesson begins by ensuring that students understand that force is a vector quantity and therefore arrows in diagrams can be used to show the magnitude and direction. Drawing free body diagrams is poorly understood and therefore time is taken to go through the three key steps in drawing these diagrams. Each of these steps is demonstrated in a number of examples, so students are able to visualise how to construct the diagrams before they are given the opportunity to apply their new-found knowledge. The rest of the lesson focuses on calculating resultant forces when the forces act in the same plane and also when they are at angles to each other. Again, worked examples are shown before students are challenged to apply. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be addressed.
This lesson has been designed for GCSE students
A fast-paced lesson where the main focus is the description of motion with reference to the forces involved. The lesson begins by introducing the term, terminal velocity, and then through consideration of examples in the English language, students will understand that this is the top velocity. The example of a skydiver is used and whilst the story of the dive is told, students are challenged to draw a sketch graph to show the different stages of this journey. An exemplary answer is used to visualise how the motion should be described. Related topics like free body diagrams and resultant forces are brought into the answer in an attempt to demonstrate how they are all interlinked. The next task asks the students to try to describe the remaining parts of the graph and they can assess against displayed mark schemes. The final part of the lesson looks at the two terminal velocities that they were during the skydive and explains that the increased surface area after the parachute was opened led to the second velocity being lower. The last task challenges the students to use this knowledge to answer a difficult exam question. It has been differentiated so those students who need extra assistance can still access the learning.
This lesson has been written for GCSE students.
A fast-paced lesson presentation (20 slides) which focuses on the understanding of the scientific term, specific latent heat, and guides students through use of the related equation in energy calculations. This lesson has been written for GCSE students and along with specific heat capacity, these are topics which students regularly say that they do not understand so the aim here has been to embed the key details. The task at the start of the lesson gets students to plot the changing state line for pure water. They have to annotate the line to show the changes in state and then most crucially recognise that when these changes in state occur, there is no change in temperature. Moving forwards, students will meet the additional terms of fusion and vaporisation and then be introduced to the equation. They are reminded that this isn’t an equation that they have to recall, but are expected to apply it and therefore the next few slides focus on the potential difficulties that could be encountered. These include the conversion between units and a mathematical skills check is included at this point so that their ability to move between grams and kilograms and Joules and kiloJoules is tested. Progress checks like this are written into the lesson at regular intervals so the students can constantly assess their understanding.
A fast-paced lesson which includes an informative lesson presentation (20 slides) and a question worksheet. Together these resources guide GCSE students through the calculation questions that they can encounter on the topic of the conservation of momentum.
The lesson begins by introducing the law of the conservation of momentum and reminding students of the equation which links momentum, mass and velocity that they are expected to recall for the GCSE exam. Time is taken to inform them of the two types of question which tend to arise on this topic - those where the masses lock together during the event and those where they remain as separate masses. Students are guided through both of these types of questions with worked examples to enable them to visualise how to begin and set out their workings. Key mathematical skills are involved such as rearranging the formula so this is also shown. Students are given the opportunity to apply these skills to a series of questions on the worksheet and the mark schemes are displayed so they can assess once completed.
A short, concise lesson presentation (25 slides) that explores the key evidence that is used to support the Big Bang Theory. This lesson has been written for GCSE students with the focus on the fine details which they need to be able to understand in order to successfully answer exam questions on this topic. The lesson begins with a fun slide which challenges their mathematical skills to work out a number of years and spot that a dingbat represents the Big Bang. This leads students into the key details of the theory and includes when it was believed to have happened. The rest of the lesson focuses on two main pieces of evidence, namely red shift and CMBR. Students are guided through these topics and related topics such as the Doppler effect are revisited. The final part of the lesson uses a quick competition to get students to recognise the names of alternative theories and a set homework challenges them to add details in terms of evidence to support each of steady state and creationism.
This bundle of 14 lessons covers the majority of the content in Topic P2 (Forces) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Speed and velocity
Acceleration
Distance and velocity-time graphs
Contact and non-contact forces
Free body diagrams
Resultant forces
Terminal velocity
Momentum
Conservation of momentum
Mass, weight and gravitational field strength
Gravitational potential and kinetic energy
Work done and power
Hooke’s Law
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding. It is estimated that this bundle would cover over 6 week’s worth of lessons.
This bundle of 10 lessons covers the majority of the content in Topic P2 of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include:
Scalar and vector quantities
Velocity
Calculating speed
Distance-time graphs
Recall and use the acceleration equation
Use the equations of motion equation
Velocity-time graphs
Recall some everyday speeds
Use the equation to calculate weight
The relationship between weight and gravitational field strength
Recall and use the equation for momentum
Momentum in collisions
The factors affecting stopping distances
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A fully resourced lesson which includes an informative lesson presentation (25 slides) and an associated worksheet that show students how to give answers to a certain number of significant figures. The answers to questions in Science are often required to be given in significant figures and this lesson guides students through this process, including the rules of rounding that must be applied for success to be likely.
This lesson has been designed for GCSE students but is suitable for KS3
An engaging lesson presentation (30 slides) that looks at electric current and ensures that students know the key details about this factor in preparation for their GCSE studies. The lesson begins by forming a definition for this electrical term and then as the lesson progresses, this definition is broken so that each element is understood. Students will be introduced to the difference between electron flow and conventional current. Time is taken to ensure that students understand that an ammeter must be set up in series. The remainder of the lesson will focus on the mathematical calculations which include current and important skills such as converting between units is covered.]
As stated above, this lesson has been designed primarily for those students taking their GCSE exams (14 - 16 year olds in the UK) but is suitable for younger students too.
A fully-resourced lesson that looks at the details of the electrical topic of resistance that students need to know for GCSE. The lesson includes a lesson presentation (21 slides) and associated worksheets. The lesson begins by looking at the meaning of resistance and focuses on the connection between resistance and current. Moving forwards, net resistance in series and parallel circuits is introduced and explained.
A resourced lesson which looks at calculating acceleration using the (v-u)/t equation. This lesson includes an engaging lesson presentation (26 slides) and a worksheet of questions that can be used for homework or during the lesson. The lesson begins by looking at the actual meaning of acceleration, ensuring that students understand it is a rate and therefore recognise the units as a result. A number of engaging activities are included in the lesson, such as the ACCELERATION OLYMPICS, to maintain motivation. Students are shown how to rearrange the equation to make velocity or time the subject and then challenged to apply these in a series of questions. Deceleration is briefly mentioned at the end of the lesson.
This lesson has been primarily designed for students studying GCSE (14 - 16 year olds in the UK) but it is suitable for students at KS3 too.
A fully-resourced lesson which looks at speed and velocity as scalar and vector quantities and then guides students through a range of questions which challenge them to calculate both of these forms of motion. The lesson includes an engaging lesson presentation (44 slides) and differentiated worksheets containing questions.
The lesson begins by introducing the terms magnitude and direction so that students can learn how scalar and vector quantities differ. Students will learn that speed is a scalar quantity and velocity is a vector quantity and then be questioned through a crossroads scenario to understand how speed can stay the same but as soon as an object changes direction, the velocity changes. Moving forwards, the students are given the equation to calculate speed and a few simple questions are worked through before they have to do a series of their own questions to find the average speeds for walking, running and cycling. A pair of more difficult speed questions are then attempted which challenge the students to convert from metres per seconds to miles per hour and to calculate the speed of a bicycle by calculating the distance travelled by the sensor on the wheel. This task is differentiated so that students who need some assistance will still be able to access the work. A quiz competition is then used to introduce students to the range of equations which contain velocity and then having been given them, they have to rearrange the formula to make velocity the subject and apply to some further questions. The final task of the lesson brings all the work together in one final competition where students have to use their new-found knowledge of speed and velocity to get TEAM POINTS. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and any misconceptions to be addressed immediately.
This lesson has been written for GCSE students and links between the other topics on the curriculum but could be used with KS3 students who are finding the topic of speed too simple and are needing a challenge
This revision lesson challenges students to explain the results of an osmosis investigation and to calculate accelerations using 2 equations. The PowerPoint and accompanying resources have been designed to check on the understanding of these two topics as detailed in the AQA GCSE biology, physics and combined specifications.
The lesson contains a range of tasks including worked examples, exam questions and quizzes which will remind students that water molecules move across partially permeable membranes by osmosis and how changes in the mass of a potato can be used to compare water concentrations in the potato and solution. Students will also recall that acceleration can be calculated from velocity-time graphs using change in velocity/time as well as through the use of F=ma.
This lesson explains that velocity is speed in a stated direction and then describes how to use the distance and time to calculate speed. The PowerPoint and accompanying resources have been designed to cover points 2.5 & 2.6 of the Edexcel GCSE Physics & Combined Science specifications.
The lesson begins with a prior knowledge check, where the students are challenged to use their understanding of the last lesson on scalar and vector quantities to complete a definition about velocity. This vector quantity is involved in the calculation of acceleration, momentum and in an equation of motion and this is briefly introduced to the students. Moving forwards, they are challenged to recall the equation to calculate speed that should have been met at KS3 as well as in Maths. The remainder of the lesson focuses on the use of this equation as well as rearrangements to change the subject. A series of step by step guides are used to model the workings required in these calculations and then the students have to apply their understanding to a series of exam questions. Mark schemes for each of the questions are embedded in the PowerPoint and the question worksheet has been differentiated two ways to provide assistance to students who are finding it difficult.
This lesson describes the key difference between scalar and vector quantities and introduces examples of physical factors that fit into each group. The PowerPoint has been designed to cover points 2.1 - 2.4 of the Edexcel GCSE Physics and Combined Science specifications.
The lesson begins with an introduction of the fact that some quantities are scalar and some are vector. A quick competition is used to introduce the key term, magnitude, and students will learn that scalar quantities such as speed have a size but are missing something else. A guided discussion period then challenges them to consider what that missing element might be, and this leads into the completion of the scalar definition. The next task then challenges the students to use this completed definition to write a similar one for a vector quantity. They will learn that velocity is a vector due to its magnitude and specific direction and then a series of exam questions are used to challenge their current understanding in terms of changes in speed and velocity at a crossroads. The mark scheme for each of the questions is embedded into the PowerPoint.
The remainder of the lesson uses another competition to introduce acceleration, momentum, energy, force, mass and weight as scalar or vector quantities and the students are challenged one final time as they have to explain why weight is an example of a vector quantity.
This lesson has been written to act as a revision tool for students at the completion of topic 2 of the Pearson Edexcel GCSE Physics specification or in the lead up to mock or terminal exams. This motion and forces topic is extensive and the engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units.
The following specification points have received a particular focus in this lesson:
Factors affecting thinking and braking distance
Calculating the distance travelled from the area under the velocity-time graph
Recalling and using the equations to calculate acceleration, force, speed, weight and momentum
Calculating uniform acceleration from a velocity-time graph
Resultant force and constant velocity
Forces and velocity as vector quantities
Circular motion
The difference between mass and weight
The law of the conservation of momentum
A number of quick quiz rounds, such as FILL THE VOID and WEIGHT A MINUTE, are used to maintain engagement and motivation and to challenge the students on their recall of important points.
It is estimated that it will take in excess of 2 hours of GCSE teaching time to cover the detail included in this lesson
A detailed lesson presentation (37 slides) that looks at the different motions that are represented on a velocity-time graph and guides students through using these graphs to calculate the distance travelled by an object. The lesson begins by challenging the students to construct a velocity-time graph by using a displayed guide and using their knowledge of drawing a distance-time graph. Moving forwards, the students will match terms of motion to the lines on the graph and time is taken to make links to the physics equations that allow acceleration and deceleration to be calculated. Students will also learn that they can use a velocity-time graph to calculate the distance travelled. A worked example is used to show them how to tackle these questions. There are regular progress checks throughout the lesson so that students can assess their understanding of this topic.
This lesson has been designed for GCSE students but could be used with higher ability KS3 students
An informative lesson presentation (26 slides) that shows students how to convert between numbers and standard form (and the other way) so they are able to understand when these are used in Science questions. The lesson begins by guiding them through how to change numbers to standard form and explains when a power of 10 that is positive will be achieved and when it will be negative. Students are given the opportunity to see these used in a Science question and there is a cross-subject link as they are also required to convert between units. A number of competitions are used near the end of the lesson to maintain motivation and to allow the students to check their progress in a fun way
This lesson has been designed for GCSE students but is suitable for KS3