A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This detailed and fully-resourced lesson describes the relationship between the structure and function of glycogen and amylose and amylopectin as components of starch. The engaging PowerPoint and accompanying resources have been designed to cover the fourth part of points 1.2 & 1.4 of the Edexcel International A-level Biology specification and links are continuously made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced.
The lesson begins with the CARBOHYDRATE WALL where students have to use their prior knowledge to collect the 9 carbohydrates on show into 3 groups. This results in glycogen, starch and cellulose being grouped together as polysaccharides and the structure and roles of the first two are covered over the course of the lesson. Cellulose is covered in a lesson in topic 4. Students will learn how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also allows for spiralling. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses and they learn more about starch. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. The importance of the compact structure for storage is discussed as well as the branched chains of amylopectin acting as quick source of energy when it is needed. The lesson concludes with a question and answer section that guides the students when answering a question about the importance of the lower solubility of the polysaccharides when compared to the monosaccharides.
This lesson describes the meaning of the terms stroke volume and heart rate and explains how to use them to calculate the cardiac output. The PowerPoint and accompanying resources have been designed to cover the content of specification point 8.12 of the Edexcel GCSE Biology & Combined Science specifications.
The lesson begins by challenging the students to use their knowledge of the structure of the heart chambers to identify the one which has the most muscular wall. Their discussions should lead to the left ventricle and following the introduction of the key term stroke volume using a quick quiz competition, they will learn that this factor is the volume of blood pumped out of the left ventricle each heart beat. Another competition introduces the normative values for stroke volume and the resting heart rate and then the students are challenged to use the provided equation to calculate the cardiac output and to write a definition for this factor using their current understanding. The remainder of the lesson considers how these three factors change during exercise and they are challenged to apply their understanding through a series of exam questions. This worksheet is differentiated two ways and the mark scheme is embedded into the PowerPoint to allow the students to assess their progress.
This fully-resourced lesson explores what happens to lactate after a period of anaerobic respiration as detailed in point 7.7 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. Students will learn how pyruvate is converted to lactate using reduced NAD and that the reoxidation of the coenzyme allows glycolysis to continue.
The lesson begins with a focus on the coenzyme, NAD, and students are challenged to recall details of its role in the oxidation of triose phosphate. Students will learn that oxidative phosphorylation in aerobic respiration allows these coenzymes to be reoxidised but that another metabolic pathway has to operate when there is no oxygen. Time is taken to go through the lactate fermentation pathway and students are encouraged to discuss the conversions before applying their knowledge to complete the diagram and passages about the pathway. Students are introduced to the oxygen debt and will learn how the volume consumed after vigorous exercise is used to catabolise lactic acid and to restore the body’s stores to normal levels.
This lesson describes how cholera, measles, malaria, TB and HIV are transmitted from an infected individual to an uninfected individual. The PowerPoint and accompanying worksheet have been primarily designed to cover point 10.1 [c] of the CIE A-level Biology specification but intricate planning ensures that the students are constantly challenged on their recall of the content of the previous lesson where the names and types of pathogens that caused these diseases was covered.
The lesson contains a wide range of tasks which will engage the students whilst challenging them to think about the biological content. Relevant examples such as the UK government’s public message of “HANDS, FACE, SPACE” are used to explain how measles, TB and HIV are directly transmitted through droplet infection or the exchange of bodily fluids. A series of exam-style questions challenge the students on their knowledge of the transmission of HIV and the mark scheme is embedded into the PowerPoint to allow them to assess their progress.
The rest of the lesson focuses on the transmission of cholera and malaria in unsafe water and through a vector respectively. Again, the students are challenged to recall the name and type of pathogen that is the causative organism before details of the spread are discussed and described.
This lesson explains the meaning of 11 key terms associated with the genetic inheritance topic and challenges the students to use them in context. The PowerPoint and accompanying resources have been designed to cover point 6.1.6 of the AQA GCSE Biology specification and include explanations of genome, chromosome, gene, allele, genotype, homozygous, heterozygous, phenotype, dominant, recessive and gamete.
The key term, genome, was met earlier in topic 6 so the lesson begins with a knowledge retrieval with the definition for this term. As the genome is the entire DNA of an organism, the next task challenges the students to identify three errors in a passage about DNA. This leads into discussions about chromosomes and genes and time is taken to explain that homologous chromosomes have the same genes at the exact same gene loci. The students will learn that alternative forms of the gene (alleles) can be found at these loci and that these structures explain the differences in inherited characteristics. Moving forwards, the main section of the lesson describes the link between the dominant and recessive alleles, homozygous and heterozygous genotypes, and the physical expression as the phenotype. The final key term is gamete, and the students are challenged to recognise a definition for this term using their knowledge of meiosis. Two progress and understanding checks complete the lesson and check on the students’ ability to recognise and write definitions for these 11 terms and to use them accurately in a written description
This fully-resourced lesson looks at the use of electrocardiograms to aid the diagnosis of CVD and other heart conditions. The engaging PowerPoint and accompanying resources have been designed to cover point 7.8 (iii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also make continual links to earlier specification points like 1.4 and 1.5 where heart topics were previously covered.
The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem.
This lesson has been designed to tie in with the lesson that covers the previous specification point on the normal electrical activity of the heart and the myogenic nature of cardiac muscle
This fully-resourced lesson describes how TP is a starting material for the synthesis of carbohydrates, lipids and amino acids as well as being recycled to regenerate RuBP in the Calvin cycle. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.2.1 (f) of the OCR A-level Biology A specification concerning the uses of TP but as the lesson makes continual references to biological molecules, it can act as a revision tool for the content of module 2.1.2.
The previous lesson covered the light-independent stage and this lesson builds on that understanding to demonstrate how the product of the Calvin cycle, triose phosphate, is used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the TP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from TP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson:
glucose
sucrose
starch and cellulose
glycerol and fatty acids
amino acids
nucleic acids
A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding.
As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this module on the structure of the chloroplast and the light-dependent and light-independent stages of photosynthesis.
This lesson describes the means of transmission of animal and plant communicable pathogens, including direct and indirect transmission. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (b) of the OCR A-level Biology A specification but intricate planning ensures that the students are constantly challenged on their recall of the content of the previous lesson, where the different types of pathogens that cause communicable diseases in plants and animals was covered.
The lesson contains a wide range of tasks which will engage the students whilst challenging them to think about the biological content. Relevant examples such as the UK government’s public message of “HANDS, FACE, SPACE” are used to explain how TB and HIV are directly transmitted through droplet infection or the exchange of bodily fluids. A series of exam-style questions challenge the students on their knowledge of the transmission of HIV and the mark scheme is embedded into the PowerPoint to allow them to assess their progress. Students will learn that although HIV is mainly a sexually transmitted infection, the sharing of needles by intravenous drug users and vertical transmission from a mother to foetus (or baby) are other mechanisms for the spread.
Moving forwards, the next part of the lesson focuses on the transmission of cholera and malaria in unsafe water and through a vector respectively. Time is taken to emphasise the meaning of a vector and student understanding is checked later in the lesson when discussing the spread of the fungus responsible for Dutch elm disease by the elm beetle. The effect of climate and social factors are also considered, and the outbreak of cholera in Yemen in 2016 is used to introduce a number of the social determinants that affect transmission.
The final part of the lesson describes the direct and indirect means of transmission of plant pathogens and biological examples are sourced to increase the relevance.
This fully-resourced lesson builds on the previous lesson where the structure of a muscle fibre was introduced and explains how muscle contracts according to the sliding filament theory. Both the PowerPoint and accompanying resources have been designed to cover the 3rd part of points 1.3.5 & 1.3.6 of the Edexcel A-level PE specification. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding checks will allow them to assess their progress.
The lesson begins by getting them to reveal the prefix myo so that they can recognise that myology is the study of muscles. This leads into the next task, where they have to identify two further terms beginning with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students were introduced to the sarcomere and the bands and zones that are found within a myofibril in a previous lesson and they are challenged to discuss how the sarcomere can narrow but the lengths of the myofilaments remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of calcium ions and ATP. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly.
This fully-resourced lesson describes the advantages of the double circulatory system that is found in mammals. The engaging PowerPoint and accompanying resources have been designed to cover point 4.4 (ii) of the Edexcel A-level Biology B specification and focuses on the differences in pressure between the pulmonary and systemic circulation.
The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary.
This detailed lesson describes how the crossing over of alleles and the independent assortment in meiosis contribute to genetic variation. The PowerPoint and accompanying resource have been designed to cover specification point 3.10 of the Edexcel International A-level Biology specification and includes describes how the fertilisation of the haploid gametes that were formed by meiosis increases variation further.
In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.
This fully-resourced lesson describes how biodiversity can be assessed within a habitat at a species level and within a species at a genetic level. The engaging PowerPoint and accompanying resources have been primarily designed to cover point 3.3 (i) of the Edexcel A-level Biology B specification but as a lot of genetic content is covered when considering diversity within a species, this lesson can be used as an introduction to topic 8 material…
A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs over the course of the lesson and this will engage the students whilst challenging them to recognise key terms from their definitions. This quiz introduces species, population, biodiversity, allele, recessive and dominant and each of these terms is put into context once introduced. Once biodiversity has been revealed, the students will learn that they are expected to be able to assess the biodiversity within a habitat and within a species.
The variety of alleles in the gene pool of a population increases the genetic diversity so a number of examples are used to demonstrate how the number of phenotypes increases with the number of alleles at a locus. The CFTR gene is used to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups.
The rest of the lesson uses a step by step guide to complete a worked example to calculate an index of diversity. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise.
This lesson describes the role of meiotic cell division, including a detailed explanation of how 4 genetically unidentical daughter cells are formed. The PowerPoint and accompanying resources have been designed to cover point 3.3 of the Edexcel GCSE Biology and Combined Science specifications.
The students covered the mitotic cell cycle in topic 2 and their knowledge of this type of cell division is utilised throughout the lesson to help with the understanding of this cycle. The lesson begins by challenging the students to recall the meaning of diploid and they will learn that the parent cell at the start of the meiotic cell cycle is a diploid cell. Time is taken to remind them of the events of interphase and then the lessons focuses on the 2 sets of division in meiosis which produces four haploid daughter cells. The identity of these cells as gametes is emphasised. The final part of the lesson uses a series of exam questions to challenge the students on their understanding of the cycle and the mark schemes are embedded into the PowerPoint to allow the students to assess their progress.
This fully-resourced lesson describes the control of gene expression at a post-transcriptional level through the removal of introns during splicing. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification and also explains how it’s possible for 1 gene to give rise to multiple products as a result of this post-transcriptional modification of mRNA.
The lesson begins with a knowledge recall as the students have to recognise the definition of a gene as a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain. This description was introduced in module 2.1.3 and the aim of the start of the lesson is to introduce the fact that despite this definition, most of the nuclear DNA in eukaryotes doesn’t actually code for proteins. A quick quiz competition is then used to introduce exons as the coding regions within a gene before students are challenged to predict the name of the non-coding regions and then to suggest a function for these introns. At this point, the students will complete a task that acts as a prior knowledge check where they have to identify the 6 errors in the descriptive passage about the lac operon and its role in the regulation of gene expression in prokaryotes. Moving forwards, pre-mRNA as a primary transcript is introduced and students will learn that this isn’t the mature strand that moves off to the ribosome for translation. Instead, a process called splicing takes place where the introns are removed and the remaining exons are joined together. Another quick quiz round leads to an answer of 20000 and students will learn that this is the number of protein-coding genes in the human genome. Importantly, the students are then told that the number of proteins that are synthesised is much higher than this value and a period of class discussion encourages them to come up with biological suggestions for this discrepancy between the two numbers. The lesson concludes with a series of understanding and application questions where students will learn that alternative splicing enables a gene to produce more than a single protein and that this natural phenomenon greatly increases biodiversity
This lesson describes the structure of a prokaryotic cell including the nucleoid, plasmid, 70S ribosomes and cell wall. The engaging PowerPoint and accompanying resources are part of the first lesson in a series of 2 lessons which have been designed to cover the details in specification point (b) in AS unit 1, topic 2 of the WJEC A-level Biology specification. This lesson has been specifically designed to be taught after the lesson on the structure of eukaryotic cells, specification point (a), so that comparisons can be drawn.
A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that prokaryotic cells do not contain centrioles
This lesson describes the meaning of the atomic and mass number and explains how to calculate the number of protons, neutrons and electrons. The PowerPoint has been designed to cover the detail of points 1.4, 1.7, 1.8 and 1.10 of the Edexcel GCSE Chemistry and Combined Science specifications.
The lesson begins by challenging the students to put the chemical symbols for astatine, oxygen, iodine and carbon together to form the word atomic. Time is taken to explain the meaning of the atomic number and to emphasise how the number of protons in the nucleus is unique to atoms of that element. The students will learn that as the number of electrons is always the same as the number of protons in an atom, the atomic number can be used to calculate the numbers of both of these particles. Moving forwards, the mass number is considered and having been given the number of neutrons in a lithium atom, the students are challenged to articulate how the mass number and atomic number were used in this calculation. A series of worked examples are done as a class before the students are given the opportunity to challenge their understanding.
This fully resourced lesson describes how coordination is brought about through nervous and hormonal control in animals. The detailed PowerPoint and accompanying resources have been primarily designed to cover point 8.7 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but it can also be used as a revision lesson as there are numerous prior knowledge checks of the nervous system, muscle contraction, protein structure and the control of gene expression.
The lesson begins by challenging the students to recall that a control system contains sensory receptors, a coordination centre and effectors. The students will learn that the communication between these components is by cell signalling and that the effectors can be muscles which contract or glands that release chemicals. The next part of the lesson looks at the differing responses from the nervous and hormonal systems and discusses how this can be governed by the need for a rapid response or more of a long term effect. In terms of nervous control, the students are challenged on their recall of the sliding filament theory of muscle contraction as covered in topic 7. Moving forwards, the students will learn that hormones can be either peptide or steroid hormones and their action at a target cell differs based on their form. Students are tested on their knowledge of protein structure by a series of exam-style questions on insulin and glucagon. They are reminded that steroid hormones can pass directly through the cell membrane and their knowledge of the control of gene expression by transcription factors is tested through a task involving oestrogen and the ER receptor. The lesson concludes by reminding students that the control of heart rate, as covered in topic 7, is a coordinated response that involves both nervous and hormonal control.
This clear and concise lesson describes the meaning of a gene locus and explains how the inheritance of two or more genes that have loci on the same chromosome demonstrates linkage. The engaging PowerPoint and associated resource have been designed to cover points 3.9 (i) and (ii) of the Edexcel International A-level Biology specification and makes clear links to the upcoming topic of meiosis when describing the effect of crossing over on this linkage
This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be.
This lesson focuses on the organisation of the nervous system into the CNS and the several divisions of the PNS. The PowerPoint and accompanying resource are part of the 1st lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification.
This lesson has been designed to act as an introduction to the topic to allow students to understand how the brain and spinal cord (as part of the CNS) and the SNS and ANS (as part of the PNS) fit into the organisation of the system. The functions of each part are briefly introduced to give an understanding that can then be built upon in future lessons in the topic. The students will learn that the main part of the brain is the cerebrum and that this organ is divided into hemispheres. They’ll learn that the brain is connected to the other part of the CNS, the spinal cord, by the brain stem, and that these nerves are responsible for conducting impulses between the brain and the rest of the body. The differences between the somatic and autonomic nervous systems are introduced before a worksheet task challenges the students to recognise which responses are brought about by the SNS and which by the ANS.
This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below:
#1 Organisation of the nervous system
#2 The structure and function of the cerebral lobes
#3 The cerebellum
#4 The structure and function of the sensory and motor neurones
#5 The relay neurones
#6 Synaptic transmission
#7 Excitation and inhibition at the synapse
#8 The somatic nervous system
#9 The autonomic nervous system
#10 The fight or flight response
#11 James-Lange theory of emotion
#12 James-Lange theory of emotion part 2
#13 Penfield’s study of the interpretative index
#14 Hebb’s theory of learning and neuronal growth
#15 An introduction to neuropsychology
#16 Brain scanning techniques
#17 Tulving’s gold memory study
This detailed lesson describes the formation of dipeptides & polypeptides and the relationship between the structure and roles of proteins in living organisms. Both the engaging PowerPoint and accompanying resources have been designed to cover the second part of point 1.4.1 of the AQA A-level Biology specification.
The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur.
The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. Students will see the differences between globular and fibrous protein and again biological examples are used to increase relevance. The lesson concludes with one final quiz round called STRUC by NUMBERS where the students have to use their understanding of the protein structures to calculate a numerical answer.