Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1116k+Views

1924k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
GPP, NPP & N (AQA A-level Biology)
GJHeducationGJHeducation

GPP, NPP & N (AQA A-level Biology)

(4)
This fully-resourced lesson explains the meaning of gross and net primary production and net production and describes how they are calculated. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the detail in point 5.3 of the AQA A-level Biology specification. Due to the fact that the productivity of plants is dependent on photosynthesis, a series of exam-style questions have been written into the lesson which challenge the students to explain how the structure of the leaf as well as the light-dependent and light-independent reactions are linked to GPP. All of the exam questions have displayed mark schemes which are included in the PowerPoint to allow students to immediately assess their understanding. A number of quick quiz competitions as well as guided discussion points are used to introduce the formulae to calculate NPP and N and to recognise the meaning of the components. Once again, this is immediately followed by the opportunity to apply their understanding to selected questions. As well as linking to photosynthesis from earlier in topic 5, this lesson has been specifically planned to challenge students on their understanding of ecosystem terminology from the previous lesson as well as preparing them for the next lesson on the efficiency of energy transfer
AQA A-level Biology Topic 8 REVISION (The control of gene expression)
GJHeducationGJHeducation

AQA A-level Biology Topic 8 REVISION (The control of gene expression)

(5)
This revision resource has been designed with the simple aim of motivating the students whilst they assess their understanding of the content found in topic 8 (The control of gene expression) of the AQA A-level Biology specification. This topic is regularly regarded as the most difficult by the students and therefore time has been taken to explain the important concepts so that key points are recalled and retained. The resource includes a detailed and engaging Powerpoint (108 slides) and associated worksheets, some of which are differentiated to allow students of differing abilities to access the work. The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention: The genetic code Substitution mutations and their impact on the primary structure Addition and deletion mutations and the frameshift Benign and malignant tumours The role of oncogenes and tumour-suppressor genes in cancer DNA methylation Genetic modification of bacteria to produce human insulin PCR Gel electrophoresis and its application in disease detection Potency of cells The range of activities include exam questions and understanding checks as well as quiz competitions to maintain student engagement. Revision resources are also available for the other 7 topics on the AQA A-level Biology specification
Pearson Edexcel IGCSE Physics Topic 1 REVISION (Forces and motion)
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics Topic 1 REVISION (Forces and motion)

(2)
This is a detailed and engaging REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Forces and motion) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Know and use the relationship between average speed, distance moved and time taken Know and use the relationship between acceleration, change in velocity and time taken Plot and explain velocity-time graphs Determine the distance travelled from the area between a velocity−time graph and the time axis Use the relationship between final speed, initial speed, acceleration and distance moved Understand how vector quantities differ from scalar quantities Understand that force is a vector quantity Know that friction is a force that opposes motion Know and use the relationship between unbalanced force, mass and acceleration Know and use the relationship between weight, mass and gravitational field strength Know that the stopping distance of a vehicle is made up of the sum of the thinking distance and the braking distance Describe the factors affecting vehicle stopping distance, including speed, mass, road condition and reaction time Know and use the relationship between momentum, mass and velocity Use the idea of momentum to explain safety features Use the conservation of momentum to calculate the mass, velocity or momentum of objects Use the relationship between force, change in momentum and time taken Demonstrate an understanding of Newton’s third law Know and use the relationship between the moment of a force and its perpendicular distance from the pivot The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Fill the VOID” where they have to compete to be the 1st to complete one of the know and use equations whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
The use of ECGs (OCR A-level Biology)
GJHeducationGJHeducation

The use of ECGs (OCR A-level Biology)

(4)
This fully-resourced lesson looks at the use and interpretation of electrocardiogram (ECG) traces and focuses on their use in the diagnosis of CVD and other heart conditions. The engaging PowerPoint and accompanying resources have been designed to cover point 3.1.2 (h) of the OCR A-level Biology A specification and continual links are made to linked topics from earlier in this module The lesson has been written to take place in an imaginary cardiology ward where the students are initially challenged on their knowledge of the symptoms and risk factors of CVD before looking at testing through the use of ECGs and diagnosis. The main focus of the lesson is the ECG and a quiz competition is used to introduce the reference points of P, QRS and T before time is taken to explain their representation with reference to the cardiac cycle. Moving forwards, a SPOT the DIFFERENCE task is used to challenge the students to recognise differences between sinus rhythm and some abnormal rhythms including tachycardia and atrial fibrillation. Bradycardia is used as a symptom of sinus node disfunction and the students are encouraged to discuss this symptom along with some others to try to diagnose this health problem.
The gross and detailed structure of the KIDNEY and NEPHRON (OCR A-level Biology A)
GJHeducationGJHeducation

The gross and detailed structure of the KIDNEY and NEPHRON (OCR A-level Biology A)

(2)
This detailed lesson has been planned to cover the 1st part of specification point 5.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the gross structure of the kidney included the detailed structure of the nephron. The lesson was designed at the same time as the other lessons in this topic on ultrafiltration, selective reabsorption and osmoregulation so that a common theme runs throughout and students can build their knowledge up gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption. This lesson has been designed for students studying on the OCR A-level Biology course
OCR A-level Biology Module 5.1.4 REVISION (Hormonal communication)
GJHeducationGJHeducation

OCR A-level Biology Module 5.1.4 REVISION (Hormonal communication)

(2)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 5.1.4 (Hormonal communication) of the OCR A-level Biology A specification. The topics tested within this lesson include: Endocrine communication Adrenal glands The pancreas and the release of insulin Regulating blood glucose Diabetes Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Edexcel GCSE Physics Topics 4 & 5 REVISION (Waves, light & the EM spectrum)
GJHeducationGJHeducation

Edexcel GCSE Physics Topics 4 & 5 REVISION (Waves, light & the EM spectrum)

(2)
This is a highly engaging, detailed and fully-resourced revision lesson which covers topics 4 & 5 of the Pearson Edexcel GCSE Physics specification. Due to the close links between the topics of waves and light and the electromagnetic spectrum, it was decided to design a single resource that challenged the students on their knowledge and understanding of the Physics detailed in these two topics. The PowerPoint and acccompanying resource have been written to include a wide range of activities which include exam-style questions (with clearly explained answers), differentiated tasks and quick quiz competitions. These activities challenge the following specification points: Define and use the terms frequency, wavelength, amplitude and period Recall and use both of the equations to calculate wave speed Describe how to measure the velocity of sound in air and ripples on water surfaces Describe the effects of reflection and refraction Explain how waves will be refracted at a boundary in terms of a change in direction and speed Recall that sound waves can be ultrasound and infrasound Explain uses of ultrasound Explain, with the aid of diagrams, refraction, the critical angle and total internal reflection Explain the difference between specular and diffuse reflection Recall that the EM waves are transverse and travel at the speed of light in a vacuum Describe the EM spectrum as continuous from radio waves to gamma rays Describe the uses and harmful effects of the EM waves To fall in line with the heavy mathematical content of the specification, there is a large emphasis on a range of mathematical skills in this lesson which includes rearranging formula, converting between units and using standard form. Due to the detail of this lesson, it is estimated that it will take in excess of 2 hours of GCSE-allocated teaching time to cover the content and this allows this to be used at the end of the topic or in the lead up to mock or terminal examinations.
Epigenetic modification (Edexcel A-level biology B)
GJHeducationGJHeducation

Epigenetic modification (Edexcel A-level biology B)

(0)
This detailed lesson describes how gene expression can be changed by epigenetic modification, which is important in ensuring cell differentiation. The PowerPoint and accompanying resources describe DNA methylation, histone modification, and non-coding RNA as methods of modification and are part of the final lesson in a series of 3 lessons that cover the content in point 7.2 of the Edexcel A-level biology B specification (Factors affecting gene expression). HIV, atherosclerosis and cystic fibrosis are included in the lesson to demonstrate the application of this control of gene expression in real biological examples. Students are challenged throughout the lesson on their current understanding as well as their knowledge of previously covered topics which have links and the answers are embedded into the PowerPoint to allow them to assess their progress. The other lessons in this series are uploaded and are titled “transcription factors” and “RNA splicing”.
Eukaryotes and prokaryotes (AQA GCSE Biology & Combined Science)
GJHeducationGJHeducation

Eukaryotes and prokaryotes (AQA GCSE Biology & Combined Science)

(3)
This lesson has been designed to cover the content of specification point 4.1.1.1 (Eukaryotes and prokaryotes) of the AQA GCSE Biology and Combined Science course. The understanding of this topic is fundamental to a lot of the later topics on the course so time has been taken to ensure that the key details are covered whilst engagement levels are kept high through the range of activities. The lesson begins by asking students to copy a diagram of a bacterial cell from memory before challenging them to recognise anything that is missing so they can discover the lack of the nucleus. Students are introduced to the idea of a prokaryotic cell before important questions are answered such as the fact that the cell still has DNA despite the absence of the nucleus. Key terms such as plasmid are introduced to the students through the use of quiz competitions in an effort to increase the likelihood of these words being remembered. Moving forwards, eukaryotic cells are considered and the common features of both of the cells are discussed and recalled. Finally, students are asked to compare both types of cells in terms of their size before being challenged on a range of mathematical skills in which they have to convert between the units of centimetres, millimetres, micrometres and nanometres.
Loop of Henle
GJHeducationGJHeducation

Loop of Henle

(3)
A concise lesson presentation (18 slides) that looks at the Loop of Henle within the kidney and enables students to understand how water is reabsorbed from this structure of the nephron. The lesson begins by ensuring that students know the terminology associated with this topic and that there are two limbs (descending and ascending). Moving forward, students will be given some data on the changes in concentration as the filtrate moves along the Loop and use this to work out how the permeability of the individual limbs differ. This lesson is designed for A-level students
OCR GCSE Biology B1 REVISION (Cell-level systems)
GJHeducationGJHeducation

OCR GCSE Biology B1 REVISION (Cell-level systems)

(1)
An engaging lesson presentation (65 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B1 (Cell-level systems) of the OCR Gateway A GCSE Biology specification The topics that are tested within the lesson include: Plant and animal cells Bacterial cells Light and electron microscopy DNA Transcription and translation Enzymes Photosynthesis Students will be engaged through the numerous activities including quiz rounds like “Shine a LIGHT on any errors" whilst crucially being able to recognise those areas which need further attention
CIE IGCSE Biology Topic 1 REVISION (Characteristics and classification of living organisms)
GJHeducationGJHeducation

CIE IGCSE Biology Topic 1 REVISION (Characteristics and classification of living organisms)

(2)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 1 (Characteristics and classification of living organisms) of the CIE IGCSE Biology specification, for examination in 2020 and 2021. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Describe the characteristics of living organisms by defining the terms movement, respiration, sensitivity, growth, reproduction, excretion and nutrition State that organisms can be classified into groups by the features that they share Define and describe the binomial system of naming species as an internationally agreed system in which the scientific name of an organism is made up of two parts showing the genus and species List the main features used to place animals and plants into the appropriate kingdoms SUPPLEMENT Explain that classification systems aim to reflect evolutionary relationships Explain that classification is traditionally based on studies of morphology and anatomy Explain that the sequences of bases in DNA and of amino acids in proteins are used as a more accurate means of classification Explain that organisms which share a more recent ancestor (are more closely related) have base sequences in DNA that are more similar than those that share only a distant ancestor List the main features used to place all organisms into one of the five kingdoms: Animal, Plant, Fungus, Prokaryote, Protoctist List the features of viruses, limited to protein coat and genetic material The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Are you the KING of the KINGDOMS” where they have to name the kingdoms involved based on a feature whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual IGCSE exams
Autosomal linkage (CIE International A-level Biology)
GJHeducationGJHeducation

Autosomal linkage (CIE International A-level Biology)

(3)
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same chromosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 16.2 (b) of the CIE International A-level Biology specification which states that students should be able to use genetic diagrams to solve problems that involve autosomal linkage. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be.
Co-dominance (CIE IGCSE Biology SUPPLEMENT)
GJHeducationGJHeducation

Co-dominance (CIE IGCSE Biology SUPPLEMENT)

(4)
This fully-resourced lesson has been designed to cover the specification point about co-dominance (and blood groups) as detailed in the supplement section of topic 17 (inheritance) of the CIE IGCSE Biology specification. As specified in this point, students will learn how this inheritance of the ABO blood group system demonstrates co-dominance (and also multiple alleles). A potentially difficult topic, time has been taken to include guidance sections where students are walked through the interpretation of the different genotypes to find out the phenotypes as well as constructing genetic diagrams and calculating blood groups from pedigree trees. There is a real focus on genetic terminology such as allele, locus, genotype and phenotype so that the understanding is deep and students can use this if they choose to further their studies at A-level. This lesson has been designed for GCSE-aged students studying the CIE IGCSE Biology course but is also suitable for older students who are learning about codominance and multiple alleles at A-level
Producing DNA fragments (AQA A-level Biology)
GJHeducationGJHeducation

Producing DNA fragments (AQA A-level Biology)

(1)
This detailed lesson explores how a range of methods are used to produce fragments of DNA as part of the recombinant DNA technology process. Both the engaging PowerPoint and accompanying resources have been written to cover the first part of point 8.4.1 of the AQA A-level Biology specification and also provides information that will prove useful for the other lessons in this sub-topic on the polymerase chain reaction and using transformed host cells. The lesson begins with a definition of recombinant DNA technology so that students can begin to understand how this process involves the transfer of DNA fragments from one species to another. Links are made to the genetic code and transcription and translation mechanisms, which were met in topic 4, in order to explain how the transferred gene can be translated in the transgenic organism. Moving forwards, the method involving reverse transcriptase and DNA polymerase is introduced and their knowledge of the structure of the polynucleotides and the roles of enzymes is challenged through questions and discussion points. Restriction enzymes are then introduced and time is taken to look at the structure of a restriction site as well as the production of sticky ends due to the staggered cut on the DNA. A series of exam-style questions with displayed mark schemes are used to allow the students to assess their current understanding. The final part of the lesson looks at the production of synthetic genes of any sequence using gene machines and a series of application questions are used to push the students to consider how this advance in technology could be utilised. As well as understanding and prior knowledge checks, quick quiz competitions are used throughout the lesson to introduce key terms such as cDNA and EcoR1 in a memorable way.
The generation and transmission of NERVE IMPULSES (OCR A level Biology A)
GJHeducationGJHeducation

The generation and transmission of NERVE IMPULSES (OCR A level Biology A)

(3)
This is a highly detailed and engaging lesson that covers the detail of specification point 5.1.1 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the generation and transmission of nerve impulses in mammals. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the OCR A-level Biology course and ties in nicely with other uploaded lessons on mammalian sensory receptors and the structures and functions of the neurones.
DNA methylation & acetylation (AQA A-level biology)
GJHeducationGJHeducation

DNA methylation & acetylation (AQA A-level biology)

(0)
This lesson describes how epigenetics, in the form of increased DNA methylation and decreased histone acetylation, controls gene expression. The PowerPoint and accompanying resources are part of the second lesson in a series of 4 which cover the content of point 8.2.2 (regulation of transcription and translation) of the AQA A-level biology specification. As shown in the cover image, the lesson begins with a challenge, where the students have to recognise the prefix epi. They will learn that this prefix means on or above in Greek meaning epigenetics can be described as factors causing changes to gene function beyond the genetic code. One of several discussion periods is used to encourage them to identify what is not involved here (i.e. gene mutations), and so, epigenetics is introduced as heritable changes in gene function without changes to the base sequence. Moving forwards, the process of DNA methylation is introduced, and students are challenged to predict how the addition of a methyl group could inhibit transcription before they have to use their prior knowledge of key terms to complete a passage about this concept. The details of a study which considered the correlation between DNA methylation and atherosclerosis are provided to broaden their knowledge and then they have to answer questions about the study using their knowledge of content from topics 1 - 7. The remainder of the lesson discusses acetylation and students will learn that the removal of acetyl groups from histones causes the chromatin to become highly condensed and prevents the transcription of the gene.
Phenotypic variation (AQA A-level Biology)
GJHeducationGJHeducation

Phenotypic variation (AQA A-level Biology)

(2)
This fully-resourced lesson explores how genetic and environmental factors cause phenotypic variation. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point 7.3 of the AQA A-level Biology specification which states that students should be able to describe how mutations and meiosis both contribute to genetic variation Students are challenged at the start of the lesson to recognise the terms phenotype and species from their definitions in order to begin a discussion on the causes of the phenotypic variation within a species. Moving forwards, students will recall that mutations are the primary source of genetic variation and time is taken to look at the effect of gene and chromosome mutations. Just like the majority of parts of this specification point, gene mutations were covered earlier in topic 4 so these tasks act as a prior knowledge check as students have to recognise the different types of gene mutations and explain their effects on the primary structure with reference to the genetic code. These prior knowledge checks are found throughout the lesson and challenge the knowledge of other topics that include photosynthesis, meiosis and inorganic ions. The karyotype of an individual who has Down syndrome is used to introduce chromosome mutations and students will be introduced to the different types, with a focus on non-disjunction. The key events of meiosis that produce variation (crossing over and independent assortment) are explored and students will be given a mathematical formula to use to calculate the number of chromosome combinations in gametes and in the resulting zygote. The final part of the lesson looks at chlorosis and how an environmental factor can prevent the express of a gene.
Edexcel GCSE Biology Topic 9 REVISION
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 9 REVISION

(2)
An engaging lesson presentation (79 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic 9 (Ecosystems and material cycles) of the EDEXCEL GCSE Biology specification The topics that are tested within the lesson include: Levels of organisation Communities Interdependence in a community Determining the number of organisms in a given area Biomass and the transfer of energy between trophic levels Recycling materials Deforestation Global warming Decomposition and the rate of decay Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
The THYROID GLAND
GJHeducationGJHeducation

The THYROID GLAND

(1)
A fully-resourced lesson which explores how the release of thyroxine from the thyroid gland regulates the metabolic rate and how a negative feedback loop is used as the final control. This lesson includes an engaging and detailed presentation (19 slides), a crossword and an understanding check task. The lesson begins by challenging the students knowledge of the endocrine system to get them to come up with the letters that form the name, “thyroid gland”. Students will be reminded that this gland releases thyroxine which is involved with the regulation of the metabolic rate. Students will learn that in order for the thyroid gland to release this hormone, it has to be stimulated by TSH from the pituitary gland which in turn was controlled by the hypothalamus. At this point, the students are challenged to put the order of the control mechanism in the right order on their worksheet. This leads them to the word negative which links to how a negative feedback loop is used as the final act in the mechanism. This lesson is designed for GCSE students but is suitable for A-level students too who need to know about this endocrine gland and also negative feedback