A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This fully-resourced lesson describes the meaning of directional and stabilising selection and uses real-life examples to develop student understanding. The PowerPoint and accompanying resources are part of the 3rd lesson in a series of 4 that have been designed to cover the details of topic 4.4 (genetic diversity and adaptation) of the AQA A-level biology specification. As stated in the specification, antibiotic resistance is used as the key example to explain directional selection whereas human baby birth weight explains stabilising selection.
The lesson is filled with current understanding checks so any misunderstandings can be immediately addressed, and also prior knowledge checks, where students are expected to recall key details from lessons in this topic so they can make important links.
The lesson concludes with a short quiz called “SELECT that word” (shown on the cover image) where students have to identify the types of selection from clues to reveal a key biological word.
This revision lesson will challenge the students on their understanding of the details of photosynthesis (topic B4.1 of the AQA GCSE specification). It has been designed to be used in the final weeks before the GCSE exams, or in the lead up to mocks or an end of topic test, and provides multiple opportunities for the students to check their understanding of the reaction, limiting factors, the inverse square law and the uses of glucose.
The lesson contains a range of tasks, including exam-style questions and quizzes, that will maintain engagement whilst allowing any misconceptions or mistakes to be addressed.
This lesson uses 17 multiple-choice questions to challenge students to apply their understanding to the calculation sections of the course. The PowerPoint and accompanying resources are designed to act as revision during the final weeks leading up to the AQA GCSE Combined chemistry exams and the following topics are covered:
Atoms and ions
Isotopes
Concentration of solutions
Mole calculations using Avogadro’s constant
Calculating relative formula mass
Mole calculations using mass and relative formula mass
Calculating masses in reactions
Calculating energy changes in reactions
Calculating the mean rate of reaction
All 17 questions have answers embedded into the PowerPoint along with explanations and are followed by additional tasks to further check understanding if it was initially limited.
Students commonly confuse the two forms of cell division, so this revision lesson has been designed to address those mistakes and misconceptions. The PowerPoint and accompanying resources have been planned to challenge the students on their understanding of the details of points 1.2.1, 1.2.2 and 6.1.2 of the AQA GCSE biology and combined science specifications.
The lesson goes through each of the three stages of the cell cycle including mitosis, to ensure that students can describe the key events and state the outcome in terms of the daughter cells. The lesson contains a series of tasks which include exam questions, discussions and a quiz which allow the students to assess their understanding. The final part of the lesson focuses on meiosis and specifically the differences to mitosis in terms of the number of cell divisions, the gametes formed, and their genetic make up.
This lesson has been designed to be used for revision purposes in the lead up to the GCSE exams or in preparation for an end of topic test or mocks.
This fully-resourced revision lesson allows students to check on their understanding of Linnaeus’s and Woese’s classification systems. The engaging PowerPoint and accompanying resources have been designed to challenge the details of point B6.4 of the AQA GCSE biology and combined science specifications.
The lesson contains a range of tasks including exam-questions and quizzes which provide opportunities for the students to assess their knowledge of kingdom, phylum, class, order, family, genus and species as the classification taxa and to recognise the binomial naming system. The lesson also reminds students that the three domain-system divides the Prokaryote kingdom into Archaea and Bacteria and describes how this system was developed once new evidence was discovered.
As well as testing the content of B6.4, this lesson uses a series of questions to challenge understanding of linked topics which include eukaryotic and prokaryotic cell structures, microscopes, communicable diseases and ecological terms.
This lesson has been planned for revision purposes in the lead up to the GCSE exams or before end of topic tests or mocks.
Each of the 11 revision lessons included in this bundle are detailed and engaging and provide the students with multiple opportunities to check their understanding of the following topics in the AQA Combined Science course:
Random and systematic errors
Independent, dependent and control variables
Pathogens
Viral, bacterial, fungal and protist diseases
The movement of water molecules by osmosis
Calculating acceleration from a velocity-time graph
Using resultant force and F=ma
Reactions of acids with metals
Redox reactions and the loss and gain of electrons
The properties of waves
Refraction
Control systems in homeostasis
The regulation of blood glucose concentration
Properties of ionising radiation
Detecting radiation based on penetrating power
Half-life
Decay equations
Classification system using kingdom, phylum, class, order, family, genus and species
The binomial naming system
The three-domain system
Chromosomes
The 3 stages of the cell cycle including mitosis
The formation of gametes by meiosis
Mole calculations
Concentration of solutions
Protons, electrons, and neutrons in atoms, ions and isotopes
Bond energy calculations
The rate of photosynthesis and limiting factors
These resources can be used in the final weeks and months before the GCSE examinations or for revision before end of topic tests or mocks.
If you want to view the quality of these resources, download the control of blood glucose, reactions of acids with metals, mitosis and meiosis and radiation resources as these have been shared for free.
This engaging revision lesson uses a range of tasks to allow students to check their understanding of radioactive decay and nuclear radiation. The PowerPoint and accompanying resources have been designed to challenge the detail of point 4.2 of the AQA GCSE physics and combined science specifications and the following sub-topics are covered:
Properties of alpha, beta and gamma
Bq as the unit of radioactivity
Detecting sources of radiation based on their penetrating power
Half-life
Decay equations
Changes to the mass and charge of the nucleus after decay
This lesson revisits the topic of random and systematic errors and also challenges students on other scientific skills such as identifying variables. Students tend to find this topic confusing, so the PowerPoint and accompanying resources have been designed to support them to identify whether an error is random or systematic and then to understand what to do next.
The lesson guides the students through a series of real life examples and shows them how to spot each type of error. There is a considerable mathematical element to this lesson, including the calculation of means or missing values in a table.
The lesson concludes with a series of exam-style questions where the students have to apply their understanding of identifying errors, variables and calculating means.
This detailed revision lesson challenges the students on their understanding of the reactions of acids with metals to produce salts and hydrogen. The PowerPoint and accompanying resources focus on the details of point 4.2.1 in the AQA GCSE chemistry and combined specifications, and time is spent reminding the students that these reactions are redox reactions.
The students are given the general word equation for acids reacting with metals and are challenged to recall how to name the salts according to the metal and acid involved in the reaction. They are reminded that redox reactions involve the loss and gain of electrons and are challenged to identify the substances which are reduced or oxidised in specific examples.
In addition to the reactions of acids with metals, this revision lesson also challenges them to write chemical formulae, balance symbol equations, and to identify the tests for gases.
This revision lesson challenges students to explain the results of an osmosis investigation and to calculate accelerations using 2 equations. The PowerPoint and accompanying resources have been designed to check on the understanding of these two topics as detailed in the AQA GCSE biology, physics and combined specifications.
The lesson contains a range of tasks including worked examples, exam questions and quizzes which will remind students that water molecules move across partially permeable membranes by osmosis and how changes in the mass of a potato can be used to compare water concentrations in the potato and solution. Students will also recall that acceleration can be calculated from velocity-time graphs using change in velocity/time as well as through the use of F=ma.
This revision lesson focuses on the properties of waves and the process of refraction as detailed in topic 6 of the AQA physics and combined specifications. Each task in the PowerPoint and accompanying resources challenges the students on their understanding of the key terms frequency, period, wavelength, amplitude, transverse and longitudinal, and reminds them how to answer refraction questions by using explanations that involve density, speed and the change in direction of the light wave.
This engaging revision lesson challenges students on their understanding of the homeostatic control system that regulates blood glucose concentration. The PowerPoint and accompanying resources have been designed to check on the understanding of the details in specification point 5.3.2 of the AQA biology and combined science specifications.
A common mistake in this topic is that students confuse glycogen with glucagon and use them incorrectly so time is spent to ensure that students recognise the difference between the complex carbohydrate and the hormone.
In addition to challenging the students on their knowledge of this control system, the following linked topics are also challenged:
key biological terms (beginning with G)
the digestive system
structures in a control system
This engaging revision lesson challenges the students on their knowledge of the communicable diseases topic as detailed in the AQA GCSE combined science specification. The PowerPoint and accompanying resources include a range of tasks that enable the students to assess their knowledge of the 7 viral, bacterial, fungal and protist infections that are listed in topic B3.1. This lesson has been designed to be used as a final revision resource as the GCSE exams approach, or as part of revision for an end of topic test.
This lesson covers a large number of the key topics from the AQA GCSE Combined Physics course in the final weeks before the GCSE examinations. The extensive PowerPoint and accompanying resources use a range of activities and tasks including exam questions and quizzes to challenge the students on their knowledge of the following topics and skills:
Units and converting between units
Answering calculation questions (with 1 or 2 equations)
Newton’s 2nd and 3rd laws of motion
Resultant forces
Conservation of energy
Efficiency and reducing wasted energy
Conservation of momentum
Scalar and vector quantities
Motions on a velocity-time graph
The relationship between force and the extension of a spring
Setting up electrical circuits
Current, potential difference and resistance in series and parallel circuits
The properties of ionising radiation
Calculating half-lives
Constructing decay equations
The properties of waves
Refraction
This resource is likely to take 4 or more lessons to cover all of the content.
This lesson explores how certain farming methods reduce biodiversity and considers the importance of a balance between conservation and farming. The PowerPoint and accompanying resources are the second in a series of 2 lessons which cover the detail in point 4.6 (biodiversity within a community) of the AQA A-level biology specification.
The lesson begins by challenging the students to use the % change formula to calculate the predicted population in the UK by mid 2030. This increase to almost 70 million will lead into the recognition that farmers are under constant pressure to grow and provide enough food to feed this ever-growing population. A series of tasks and discussions will consider farming methods such as continuous monoculture and herbicides and insecticides which reduce biodiversity. This introduces conservation as active management to prevent the loss of biodiversity and several methods including the CSS and buffer strips are explored to encourage the students to think about the aims of these strategies.
The other lesson covering specification point 4.6 is uploaded and named “biodiversity within a community”.
This lesson describes the actions of the sympathetic and parasympathetic divisions of the ANS. The PowerPoint and accompanying resources are part of the 8th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification.
The students were introduced to the autonomic nervous system (ANS) in the 1st lesson in this topic, so this lesson has been designed to deepen and further their understanding of the actions of this system. Students will come to understand that the sympathetic division is most active during times of stress whilst the parasympathetic division is most active during times of sleep and relaxation. Through a series of tasks including a fun quiz round, they will discover the actions of the two divisions and then be challenged to apply their understanding.
This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below:
#1 Organisation of the nervous system
#2 The structure and function of the cerebral lobes
#3 The cerebellum
#4 The structure and function of the sensory and motor neurones
#5 The relay neurones
#6 Synaptic transmission
#7 Excitation and inhibition at the synapse
#8 The autonomic nervous system
#9 The fight or flight response
#10 The somatic nervous system
#11 James-Lange theory of emotion
#12 James-Lange theory of emotion part 2
#13 Penfield’s study of the interpretative index
#14 Hebb’s theory of learning and neuronal growth
#15 An introduction to neuropsychology
#16 Brain scanning techniques
#17 Tulving’s gold memory study
This lesson describes the structure and function of the sensory and motor neurones. The PowerPoint and accompanying resources are part of the 4th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification.
This lesson focuses on the functions and the structural similarities and differences between a sensory and motor neurone. Students will be introduced to key structures like the cell body, axon and dendrites and learn how they differ in these two peripheral nervous system neurones. They will also learn about the myelin sheath and will be challenged to use a data table to recognise that myelinated neurones conduct impulses faster than unmyelinated neurones. There is a brief explanation about the jumping action of the impulse between the nodes of Ranvier to enable this faster conduction.
This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below:
#1 Organisation of the nervous system
#2 The structure and function of the cerebral lobes
#3 The cerebellum
#4 The structure and function of the sensory and motor neurones
#5 The relay neurones
#6 Synaptic transmission
#7 Excitation and inhibition at the synapse
#8 The somatic nervous system
#9 The autonomic nervous system
#10 The fight or flight response
#11 James-Lange theory of emotion
#12 James-Lange theory of emotion part 2
#13 Penfield’s study of the interpretative index
#14 Hebb’s theory of learning and neuronal growth
#15 An introduction to neuropsychology
#16 Brain scanning techniques
#17 Tulving’s gold memory study
This concise lesson describes the function of the cerebellum. The PowerPoint and accompanying resources are part of the 3rd lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification.
In the previous lesson, the students were introduced to the function of the lobes of the cerebral cortex and so the initial task challenges them to use that knowledge to learn the name of the cerebellum. The students will be able to locate this structure on a diagram. Moving forwards, the function of this brain structure as controlling balance, posture and fine movement is introduced and real life examples are given. As this is the last lesson on brain structure, the final part of the lesson uses a BLOCKBUSTERS quiz to challenge their understanding of the content of the first 3 lessons of this topic.
This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below:
#1 Organisation of the nervous system
#2 The structure and function of the cerebral lobes
#3 The cerebellum
#4 The structure and function of the sensory and motor neurones
#5 The relay neurones
#6 Synaptic transmission
#7 Excitation and inhibition at the synapse
#8 The somatic nervous system
#9 The autonomic nervous system
#10 The fight or flight response
#11 James-Lange theory of emotion
#12 James-Lange theory of emotion part 2
#13 Penfield’s study of the interpretative index
#14 Hebb’s theory of learning and neuronal growth
#15 An introduction to neuropsychology
#16 Brain scanning techniques
#17 Tulving’s gold memory study
This lesson describes the structure and localised function of the frontal, occipital, temporal and parietal lobes of the cerebrum. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification.
In the previous lesson, the students were introduced to the cerebrum as two hemispheres connected by the corpus callosum. This lesson builds on this by introducing the cerebral cortex as the outer layer which is divided into four lobes in each hemisphere. A series of quizzes are used throughout the lesson to introduce key terms in an engaging and (hopefully) memorable way, and through one quiz, the students will discover the names of the 4 lobes and recognise where they are located. Moving forward, students will learn about the function of each lobe, including the localised function of the motor, somatosensory, visual, auditory, Broca’s and Wernicke’s areas.
This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below:
#1 Organisation of the nervous system
#2 The structure and function of the cerebral lobes
#3 The cerebellum
#4 The structure and function of the sensory and motor neurones
#5 The relay neurones
#6 Synaptic transmission
#7 Excitation and inhibition at the synapse
#8 The somatic nervous system
#9 The autonomic nervous system
#10 The fight or flight response
#11 James-Lange theory of emotion
#12 James-Lange theory of emotion part 2
#13 Penfield’s study of the interpretative index
#14 Hebb’s theory of learning and neuronal growth
#15 An introduction to neuropsychology
#16 Brain scanning techniques
#17 Tulving’s gold memory study
This lesson focuses on the organisation of the nervous system into the CNS and the several divisions of the PNS. The PowerPoint and accompanying resource are part of the 1st lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification.
This lesson has been designed to act as an introduction to the topic to allow students to understand how the brain and spinal cord (as part of the CNS) and the SNS and ANS (as part of the PNS) fit into the organisation of the system. The functions of each part are briefly introduced to give an understanding that can then be built upon in future lessons in the topic. The students will learn that the main part of the brain is the cerebrum and that this organ is divided into hemispheres. They’ll learn that the brain is connected to the other part of the CNS, the spinal cord, by the brain stem, and that these nerves are responsible for conducting impulses between the brain and the rest of the body. The differences between the somatic and autonomic nervous systems are introduced before a worksheet task challenges the students to recognise which responses are brought about by the SNS and which by the ANS.
This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below:
#1 Organisation of the nervous system
#2 The structure and function of the cerebral lobes
#3 The cerebellum
#4 The structure and function of the sensory and motor neurones
#5 The relay neurones
#6 Synaptic transmission
#7 Excitation and inhibition at the synapse
#8 The somatic nervous system
#9 The autonomic nervous system
#10 The fight or flight response
#11 James-Lange theory of emotion
#12 James-Lange theory of emotion part 2
#13 Penfield’s study of the interpretative index
#14 Hebb’s theory of learning and neuronal growth
#15 An introduction to neuropsychology
#16 Brain scanning techniques
#17 Tulving’s gold memory study