Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1116k+Views

1924k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Transcription factors & the lac operon (OCR A-level Biology)
GJHeducationGJHeducation

Transcription factors & the lac operon (OCR A-level Biology)

(0)
This fully-resourced lesson describes the regulatory mechanisms that control gene expression at a transcriptional level. The detailed PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification which states that the students knowledge should include the lac operon and examples of transcription factors in eukaryotes. . This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in module 2.1.3, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
Osmosis and cells (OCR A-level Biology)
GJHeducationGJHeducation

Osmosis and cells (OCR A-level Biology)

(0)
This detailed lesson describes how the movement of water molecules by osmosis can affect both plant and animal cells. Both the PowerPoint and accompanying resources have been designed to cover specification point 2.1.5 (e) [i] as detailed in the OCR A-level Biology A specification and there is a particular focus on solutions of different water potentials. It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water when animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions and the final appearance of these cells is described, including any issues this may cause. This lesson has been specifically written to tie in with the previous two lessons covering 2.1.5 (b) & (d) where the cell membrane, diffusion and active transport were described.
Topic 8: Origins of genetic variation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 8: Origins of genetic variation (Edexcel A-level Biology B)

10 Resources
This lesson bundle contains 10 lessons which are fully-resourced and have been designed to cover the content as detailed in topic 8 of the Edexcel A-level Biology B specification (Origins of genetic variation). Each lesson includes a wide range of activities that will engage and motivate the students whilst covering the following topic 8 specification points: Mutations are the source of new variations Random assortment and crossing over in meiosis give rise to new combinations of alleles in gametes Random fertilisation brings about genetic variation The meaning of genetic terms Be able to construct genetic crosses and pedigree diagrams The inheritance of two non-interacting unlinked genes Autosomal linkage as the presence of alleles on the same chromosome Sex linkage on the X chromosome Use the chi squared test to determine the significance of the difference between observed and expected results Stabilising and disruptive selection Genetic drift Population bottlenecks and the founder effect Monitoring changes in allele frequencies using the Hardy Weinberg equation If you would like to sample the quality of the lessons in this bundle then download the sex linkage and genetic drift lessons as these have been uploaded for free
Natural selection (CIE A-level Biology)
GJHeducationGJHeducation

Natural selection (CIE A-level Biology)

(0)
This engaging lesson uses the example of resistant bacteria and the modern-day giraffe to describe how natural selection occurs. The PowerPoint and accompanying resources have been designed to cover point 17.2 (a) of the CIE A-level Biology specification but also explains that genetic diversity is important for selection and therefore covers 17.1 (d) at the same time. President Trump’s error ridden speech about viruses antibiotics is used at the beginning of the lesson to remind students antibiotics are actually a treatment for bacterial infections. Moving forwards, 2 quick quiz competitions will initially introduce MRSA and then will show the students that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin. In doing so, they will see the principles of natural selection so they can be applied to different situations such as describing how the anatomy of the modern-day giraffe has evolved over time. The final part of the lesson introduces adaptations and convergent evolution and also links to the need for modern classification techniques which is covered later in topic 17.
Autonomic nervous system (AQA GCSE Psychology)
GJHeducationGJHeducation

Autonomic nervous system (AQA GCSE Psychology)

(0)
This lesson describes the actions of the sympathetic and parasympathetic divisions of the ANS. The PowerPoint and accompanying resources are part of the 8th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. The students were introduced to the autonomic nervous system (ANS) in the 1st lesson in this topic, so this lesson has been designed to deepen and further their understanding of the actions of this system. Students will come to understand that the sympathetic division is most active during times of stress whilst the parasympathetic division is most active during times of sleep and relaxation. Through a series of tasks including a fun quiz round, they will discover the actions of the two divisions and then be challenged to apply their understanding. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The autonomic nervous system #9 The fight or flight response #10 The somatic nervous system #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Organisation of the nervous system (AQA GCSE Psychology)
GJHeducationGJHeducation

Organisation of the nervous system (AQA GCSE Psychology)

(0)
This lesson focuses on the organisation of the nervous system into the CNS and the several divisions of the PNS. The PowerPoint and accompanying resource are part of the 1st lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. This lesson has been designed to act as an introduction to the topic to allow students to understand how the brain and spinal cord (as part of the CNS) and the SNS and ANS (as part of the PNS) fit into the organisation of the system. The functions of each part are briefly introduced to give an understanding that can then be built upon in future lessons in the topic. The students will learn that the main part of the brain is the cerebrum and that this organ is divided into hemispheres. They’ll learn that the brain is connected to the other part of the CNS, the spinal cord, by the brain stem, and that these nerves are responsible for conducting impulses between the brain and the rest of the body. The differences between the somatic and autonomic nervous systems are introduced before a worksheet task challenges the students to recognise which responses are brought about by the SNS and which by the ANS. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Cerebral lobes (AQA GCSE Psychology)
GJHeducationGJHeducation

Cerebral lobes (AQA GCSE Psychology)

(0)
This lesson describes the structure and localised function of the frontal, occipital, temporal and parietal lobes of the cerebrum. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. In the previous lesson, the students were introduced to the cerebrum as two hemispheres connected by the corpus callosum. This lesson builds on this by introducing the cerebral cortex as the outer layer which is divided into four lobes in each hemisphere. A series of quizzes are used throughout the lesson to introduce key terms in an engaging and (hopefully) memorable way, and through one quiz, the students will discover the names of the 4 lobes and recognise where they are located. Moving forward, students will learn about the function of each lobe, including the localised function of the motor, somatosensory, visual, auditory, Broca’s and Wernicke’s areas. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
The cerebellum (AQA GCSE Psychology)
GJHeducationGJHeducation

The cerebellum (AQA GCSE Psychology)

(0)
This concise lesson describes the function of the cerebellum. The PowerPoint and accompanying resources are part of the 3rd lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. In the previous lesson, the students were introduced to the function of the lobes of the cerebral cortex and so the initial task challenges them to use that knowledge to learn the name of the cerebellum. The students will be able to locate this structure on a diagram. Moving forwards, the function of this brain structure as controlling balance, posture and fine movement is introduced and real life examples are given. As this is the last lesson on brain structure, the final part of the lesson uses a BLOCKBUSTERS quiz to challenge their understanding of the content of the first 3 lessons of this topic. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Sensory and motor neurones (AQA GCSE Psychology)
GJHeducationGJHeducation

Sensory and motor neurones (AQA GCSE Psychology)

(0)
This lesson describes the structure and function of the sensory and motor neurones. The PowerPoint and accompanying resources are part of the 4th lesson in a series of 17 lessons that cover the details of the brain and neuropsychology topic of the AQA GCSE Psychology specification. This lesson focuses on the functions and the structural similarities and differences between a sensory and motor neurone. Students will be introduced to key structures like the cell body, axon and dendrites and learn how they differ in these two peripheral nervous system neurones. They will also learn about the myelin sheath and will be challenged to use a data table to recognise that myelinated neurones conduct impulses faster than unmyelinated neurones. There is a brief explanation about the jumping action of the impulse between the nodes of Ranvier to enable this faster conduction. This topic of the brain and neuropsychology has proved particularly difficult for the students in recent years, so I have taken time to analyse the lesson sequencing. There’s a lot of content to absorb and to understand before moving onto the next part, so I’ve tried to ensure that cross topics links and prior knowledge checks run throughout the lessons. I have organised the lessons to run through the biology content first before moving onto the psychology parts as shown by the 17 lessons below: #1 Organisation of the nervous system #2 The structure and function of the cerebral lobes #3 The cerebellum #4 The structure and function of the sensory and motor neurones #5 The relay neurones #6 Synaptic transmission #7 Excitation and inhibition at the synapse #8 The somatic nervous system #9 The autonomic nervous system #10 The fight or flight response #11 James-Lange theory of emotion #12 James-Lange theory of emotion part 2 #13 Penfield’s study of the interpretative index #14 Hebb’s theory of learning and neuronal growth #15 An introduction to neuropsychology #16 Brain scanning techniques #17 Tulving’s gold memory study
Farming and conservation (AQA A-level Biology)
GJHeducationGJHeducation

Farming and conservation (AQA A-level Biology)

(0)
This lesson explores how certain farming methods reduce biodiversity and considers the importance of a balance between conservation and farming. The PowerPoint and accompanying resources are the second in a series of 2 lessons which cover the detail in point 4.6 (biodiversity within a community) of the AQA A-level biology specification. The lesson begins by challenging the students to use the % change formula to calculate the predicted population in the UK by mid 2030. This increase to almost 70 million will lead into the recognition that farmers are under constant pressure to grow and provide enough food to feed this ever-growing population. A series of tasks and discussions will consider farming methods such as continuous monoculture and herbicides and insecticides which reduce biodiversity. This introduces conservation as active management to prevent the loss of biodiversity and several methods including the CSS and buffer strips are explored to encourage the students to think about the aims of these strategies. The other lesson covering specification point 4.6 is uploaded and named “biodiversity within a community”.
Mitosis and Meiosis REVISION (AQA GCSE)
GJHeducationGJHeducation

Mitosis and Meiosis REVISION (AQA GCSE)

(0)
Students commonly confuse the two forms of cell division, so this revision lesson has been designed to address those mistakes and misconceptions. The PowerPoint and accompanying resources have been planned to challenge the students on their understanding of the details of points 1.2.1, 1.2.2 and 6.1.2 of the AQA GCSE biology and combined science specifications. The lesson goes through each of the three stages of the cell cycle including mitosis, to ensure that students can describe the key events and state the outcome in terms of the daughter cells. The lesson contains a series of tasks which include exam questions, discussions and a quiz which allow the students to assess their understanding. The final part of the lesson focuses on meiosis and specifically the differences to mitosis in terms of the number of cell divisions, the gametes formed, and their genetic make up. This lesson has been designed to be used for revision purposes in the lead up to the GCSE exams or in preparation for an end of topic test or mocks.
Classification REVISION (AQA GCSE)
GJHeducationGJHeducation

Classification REVISION (AQA GCSE)

(0)
This fully-resourced revision lesson allows students to check on their understanding of Linnaeus’s and Woese’s classification systems. The engaging PowerPoint and accompanying resources have been designed to challenge the details of point B6.4 of the AQA GCSE biology and combined science specifications. The lesson contains a range of tasks including exam-questions and quizzes which provide opportunities for the students to assess their knowledge of kingdom, phylum, class, order, family, genus and species as the classification taxa and to recognise the binomial naming system. The lesson also reminds students that the three domain-system divides the Prokaryote kingdom into Archaea and Bacteria and describes how this system was developed once new evidence was discovered. As well as testing the content of B6.4, this lesson uses a series of questions to challenge understanding of linked topics which include eukaryotic and prokaryotic cell structures, microscopes, communicable diseases and ecological terms. This lesson has been planned for revision purposes in the lead up to the GCSE exams or before end of topic tests or mocks.
AQA GCSE Combined Physics FINAL REVISION
GJHeducationGJHeducation

AQA GCSE Combined Physics FINAL REVISION

(0)
This lesson covers a large number of the key topics from the AQA GCSE Combined Physics course in the final weeks before the GCSE examinations. The extensive PowerPoint and accompanying resources use a range of activities and tasks including exam questions and quizzes to challenge the students on their knowledge of the following topics and skills: Units and converting between units Answering calculation questions (with 1 or 2 equations) Newton’s 2nd and 3rd laws of motion Resultant forces Conservation of energy Efficiency and reducing wasted energy Conservation of momentum Scalar and vector quantities Motions on a velocity-time graph The relationship between force and the extension of a spring Setting up electrical circuits Current, potential difference and resistance in series and parallel circuits The properties of ionising radiation Calculating half-lives Constructing decay equations The properties of waves Refraction This resource is likely to take 4 or more lessons to cover all of the content.
Radiation REVISION (AQA GCSE)
GJHeducationGJHeducation

Radiation REVISION (AQA GCSE)

(0)
This engaging revision lesson uses a range of tasks to allow students to check their understanding of radioactive decay and nuclear radiation. The PowerPoint and accompanying resources have been designed to challenge the detail of point 4.2 of the AQA GCSE physics and combined science specifications and the following sub-topics are covered: Properties of alpha, beta and gamma Bq as the unit of radioactivity Detecting sources of radiation based on their penetrating power Half-life Decay equations Changes to the mass and charge of the nucleus after decay
Communicable diseases REVISION (AQA Combined)
GJHeducationGJHeducation

Communicable diseases REVISION (AQA Combined)

(0)
This engaging revision lesson challenges the students on their knowledge of the communicable diseases topic as detailed in the AQA GCSE combined science specification. The PowerPoint and accompanying resources include a range of tasks that enable the students to assess their knowledge of the 7 viral, bacterial, fungal and protist infections that are listed in topic B3.1. This lesson has been designed to be used as a final revision resource as the GCSE exams approach, or as part of revision for an end of topic test.
Control of blood glucose REVISION (GCSE)
GJHeducationGJHeducation

Control of blood glucose REVISION (GCSE)

(0)
This engaging revision lesson challenges students on their understanding of the homeostatic control system that regulates blood glucose concentration. The PowerPoint and accompanying resources have been designed to check on the understanding of the details in specification point 5.3.2 of the AQA biology and combined science specifications. A common mistake in this topic is that students confuse glycogen with glucagon and use them incorrectly so time is spent to ensure that students recognise the difference between the complex carbohydrate and the hormone. In addition to challenging the students on their knowledge of this control system, the following linked topics are also challenged: key biological terms (beginning with G) the digestive system structures in a control system
Properties of waves REVISION (AQA GCSE)
GJHeducationGJHeducation

Properties of waves REVISION (AQA GCSE)

(0)
This revision lesson focuses on the properties of waves and the process of refraction as detailed in topic 6 of the AQA physics and combined specifications. Each task in the PowerPoint and accompanying resources challenges the students on their understanding of the key terms frequency, period, wavelength, amplitude, transverse and longitudinal, and reminds them how to answer refraction questions by using explanations that involve density, speed and the change in direction of the light wave.
Osmosis and Acceleration REVISION (AQA GCSE)
GJHeducationGJHeducation

Osmosis and Acceleration REVISION (AQA GCSE)

(0)
This revision lesson challenges students to explain the results of an osmosis investigation and to calculate accelerations using 2 equations. The PowerPoint and accompanying resources have been designed to check on the understanding of these two topics as detailed in the AQA GCSE biology, physics and combined specifications. The lesson contains a range of tasks including worked examples, exam questions and quizzes which will remind students that water molecules move across partially permeable membranes by osmosis and how changes in the mass of a potato can be used to compare water concentrations in the potato and solution. Students will also recall that acceleration can be calculated from velocity-time graphs using change in velocity/time as well as through the use of F=ma.
Reactions of acids with metals REVISION (AQA GCSE)
GJHeducationGJHeducation

Reactions of acids with metals REVISION (AQA GCSE)

(0)
This detailed revision lesson challenges the students on their understanding of the reactions of acids with metals to produce salts and hydrogen. The PowerPoint and accompanying resources focus on the details of point 4.2.1 in the AQA GCSE chemistry and combined specifications, and time is spent reminding the students that these reactions are redox reactions. The students are given the general word equation for acids reacting with metals and are challenged to recall how to name the salts according to the metal and acid involved in the reaction. They are reminded that redox reactions involve the loss and gain of electrons and are challenged to identify the substances which are reduced or oxidised in specific examples. In addition to the reactions of acids with metals, this revision lesson also challenges them to write chemical formulae, balance symbol equations, and to identify the tests for gases.
Random and systematic errors REVISION (AQA GCSE)
GJHeducationGJHeducation

Random and systematic errors REVISION (AQA GCSE)

(0)
This lesson revisits the topic of random and systematic errors and also challenges students on other scientific skills such as identifying variables. Students tend to find this topic confusing, so the PowerPoint and accompanying resources have been designed to support them to identify whether an error is random or systematic and then to understand what to do next. The lesson guides the students through a series of real life examples and shows them how to spot each type of error. There is a considerable mathematical element to this lesson, including the calculation of means or missing values in a table. The lesson concludes with a series of exam-style questions where the students have to apply their understanding of identifying errors, variables and calculating means.