A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This fully-resourced revision lesson consists of an engaging PowerPoint and differentiated resources which together challenge the students on their knowledge of the Key concepts in Physics, which are detailed in topic 1 of the Pearson Edexcel GCSE Physics specification . The content in this topic is particularly important because it will be assessed in both paper 1 and paper 2 of the terminal exams.
The lesson has been filled with a wide range of activities which test the following specification points:
Recall and use the SI units for physical quantities
Recall and use multiples and sub-multiples of units
Be able to convert between different units
Use significant figures and standard form#
To fall in line with the heavy mathematical content of this specification, the main task of the lesson challenges the students to carry out a range of calculations where they have to convert between units and leave their answers in a specific form.
This revision lesson has been filled with activities that will challenge the students on their knowledge and understanding of the content detailed in topic 8 (Energy - forces doing work) of the Pearson Edexcel GCSE Physics specification. The wide range of activities in the engaging PowerPoint and accompanying resources will check on the knowledge of this topic and allow the students to recognise those areas which need further attention before the mock or terminal GCSE exams.
This resource has been designed to cover as much of topic 8 as possible but the following points have received particular attention:
Describe how to measure the work done by a force
Understand that work done is equal to energy transferred
Recall and use the equation to calculate work done
Calculate the changes in energy involved when a system is changed by work done by forces
Recall and use the equation to calculate gravitational potential energy
Recall and use the equation to calculate kinetic energy
Explain how energy is dissipated so that it is stored in less useful ways
Define power as the rate at which energy is transferred and that 1 watt is equal to one joule per second
Recall and use the equation to calculate power
Recall and use the equation to calculate efficiency
The mathematical content of this specification and this topic is heavy and in line with this lots of calculated-based tasks are included and all of the answers are explained in steps so students can assess their progress
The main task of the lesson which challenges students to use the principle of moments has been differentiated so that differing abilities can access the work
This is a highly engaging, detailed and fully-resourced revision lesson which has been designed to test the students on their knowledge and understanding of topic 6 (Radioactivity) of the Pearson Edexcel GCSE Physics specification. The PowerPoint and accompanying resources contain a wide range of resources which include exam-style questions with fully-explained answers, differentiated tasks and quick quiz competitions. The students will be motivated by the range of tasks whilst crucially recognising those areas of the specification which require some extra time before the exams
The following specification points are covered in this lesson:
Describe the structure of atom and recall the typical size
Recall the relative masses and charges of the subatomic particles and use the number of protons and electrons to explain why atoms are neutral
Describe the structure of the nuclei of an isotope
Explain what is meant by background radiation and recall sources
Describe methods for measuring and detecting radioactivity
Describe the process of beta minus and beta plus decay
Write and balance nuclear decay equations
Explain the effects on the proton and nucleon number as a result of decay
Recall that the unit of radioactivity is Bq
Use the concept of half-life to carry out calculations
Describe the use of isotopes in PET scanners
Describe the differences between nuclear fission and fusion
Explain how the fission of U-235 produces two daughter nuclei, two or three neutrons and releases energy
Describe the advantages and disadvantages of nuclear energy
Explain why nuclear fusion cannot happen at low temperatures and pressures
It is estimated that it will take in excess of 2 hours of GCSE teaching to cover the detail of this lesson and it can be used for effective revision at the end of the topic or in the lead up to mock or terminal exams.
This fully-resourced revision lesson contains a wide range of activities that will challenge the students on their knowledge and understanding of the content detailed in the CORE and SUPPLEMENT sections of topic P2 (Work, energy and power) of the CIE IGCSE Combined Science specification. These activities include exam style questions which will allow the students to assess their progress against the clearly explained answers. There is also a quiz that runs throughout the course of the lesson and this has been designed to maintain engagement and motivation.
The following specification points have been covered in this lesson:
Recall and use the equation to calculate work done
Demonstrate an understanding that work done = energy transferred
Understand that an object may have energy due to its motion or position
Recall and use the equations to calculate kinetic and gravitational potential energy
Recognise the ways that energy is transferred during events and processes
Apply the conservation of energy
Recall and use the equation to calculate power
Distinguish between renewable and non-renewable sources of energy
Describe how electricity is obtained from the tides, hydroelectric power and nuclear fission
One of the main tasks of the lesson, which challenges the students to apply the law of the conservation of energy, has been differentiated so that differing abilities can access the work
This is a fully-resourced revision lesson which covers the content detailed in the CORE & SUPPLEMENT sections of topics P5 & P6 (Electrical quantities and electric circuits) of the CIE IGCSE Combined Science specification. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and to ultimately recognise those areas which need further consideration.
The following specification points have been given particular attention in this lesson:
The electrical symbols that represent the electrical components
Describe the differences between series and parallel circuits
Recall that a voltmeter is connected in parallel
One volt is equal to one joule per coulomb
Recall and use the equations that calculate charge, potential difference and power
Recall that an ammeter is connected in series
Calculate the currents, potential differences and resistances in series and parallel circuits
Know the safety function of the fuse
Understand that like charges repel and unlike charges attract
This lesson has been designed to fall in line with the heavy mathematical content of the Physics specification with a number of calculation tasks and students are guided through the range of skills that they will have to employ
This fully-resourced revision lesson covers the CORE and SUPPLEMENT sections of topic P4 (Properties of waves, including light and sound) of the CIE IGCSE Combined Science specification. The engaging PowerPoint and acccompanying resource have been written to include a wide range of activities which include exam-style questions (with clearly explained answers), differentiated tasks and quick quiz competitions. These activities challenge the following specification points:
State the meaning of speed, frequency, wavelength and amplitude
Distinguish between transverse and longitudinal waves and give examples
Describe how waves can undergo reflection and refraction and that the latter is caused by a change in the wave speed
Recall and use the law of reflection
Describe the main features of the EM spectrum
State that all waves travel at the speed of light in a vacuum and recall this speed
Describe the uses of the EM waves
Describe the longitudinal nature of sound waves
Recall and use the equation to calculate wave speed
Describe how to measure the speed of sound in air and ripples on water surfaces
Recall that sound waves can be ultrasound
To fall in line with the greater mathematical content of the specification, there is a large emphasis on a range of mathematical skills in this lesson which includes the use of standard form.
Due to the detail of this lesson, it is estimated that it will take in excess of 2 hours of IGCSE-allocated teaching time to cover the content and this allows this to be used at the end of the topic or in the lead up to mock or terminal examinations.
All of the lessons in this bundle are fully-resourced and have been designed to challenge the students on their knowledge of the topics which can be assessed in PAPER 1 of the Pearson Edexcel GCSE Physics specification.
All 7 topics that can be assessed in paper 1 are covered by these lessons:
Topic 1: Key concepts in Physics
Topic 2: Motion and forces
Topic 3: Conservation of energy
Topic 4: Waves
Topic 5: Light and the EM spectrum
Topic 6: Radioactivity
Topic 7: Astronomy
The PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clear explanations of the answer, differentiated tasks and quiz competitions. There is also a big emphasis on the mathematical element of the specification and students are guided through the use of a range of skills which include the conversion of units and the rearrange of formulae to change the subject.
If you would like to see the quality of the lessons, download the topics 4 & 5 and 7 lessons which have been shared for free
This fully-resourced revision lesson has been written to cover the major details of the electricity and circuits topic that can be assessed in the GCSE Physics and Combined Science (HT) exams. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and to ultimately recognise those areas which need further consideration.
The following points are covered in this revision lesson:
The electrical symbols that represent the electrical components
Describe the differences between series and parallel circuits
Recall that a voltmeter is connected in parallel
One volt is equal to one joule per coulomb
Recall and use the equations that calculate energy transferred, charge, potential difference, power and electrical power
Recall that an ammeter is connected in series
Calculate the currents, potential differences and resistances in series and parallel circuits
Explain how current varies with potential difference in resistors
Know the functions of the wires in a plug and the safety features
The main task of the lesson, which challenges the students to calculate the currents, potential differences and resistances in series and parallel circuits, is differentiated to allow students of differing abilities to access the work
This lesson has been written to act as a revision tool for students at the completion of topic 2.1 of the WJEC GCSE Physics specification or in the lead up to mock or terminal exams. The engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units.
The following specification points have received a particular focus in this lesson:
Motion using speed, velocity and acceleration
Speed-time graphs
Application of the equations to calculate speed and acceleration
Using velocity-time graphs to calculate uniform acceleration and distance travelled
Knowledge of the terms reaction time, thinking distance, braking distance and stopping distance
The factors which affect these distances
A number of quick quiz rounds, such as THE WHOLE DISTANCE, are used to maintain engagement and motivation and to challenge the students on their recall of important points.
All of the lessons in this bundle are fully-resourced and have been designed to contain a wide range of activities that will challenge the students on their knowledge and understanding of the content of UNIT 2 of the WJEC GCSE Physics specification.
The engaging PowerPoints and accompanying resources cover the following topics:
Topic 2.1: Distance, speed and acceleration
Topic 2.3: Work and energy
Topic 2.4: Further motion concepts
Topic 2.7: Types of radiation
Topic 2.8: Half-life
Topic 2.9: Nuclear decay and nuclear energy
To fall in line with the heavy mathematical content of this course, the lessons challenge a range of skills including rearranging formulae, converting units, using standard form and significant figures and percentage change
If you would like to see the quality of the lessons, download the topic 2.3 lesson which has been shared for free
All of the lessons in this bundle are fully-resourced and have been designed to challenge the students on their knowledge of the Physics topics of the CIE IGCSE Combined Science specification. The lessons cover both the CORE and SUPPLEMENT sections.
The following 5 topics are covered by these lessons:
Topic P1: Motion
Topic P2: Work, energy and power
Topic P4: Properties of waves, including light and sound
Topic P5: Electrical quantities
Topic P6: Electric circuits
The PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clear explanations of the answers, differentiated tasks and quiz competitions. There is also a big emphasis on the mathematical element of the specification and students are guided through the use of a range of skills which include the conversion of units and the rearranging of formulae to change the subject.
If you would like to see the quality of the lessons, download the topic P1 lesson which has been shared for free
This revision lesson is fully-resourced and differentiated to allow students of differing abilities to assess their understanding of topic 2.4 (Further motion concepts) of the WJEC GCSE Physics specification. The engaging and detailed PowerPoint and accompanying resources contain exam-style questions, quick tasks, discussion points and a quiz competition which check on the following specification points:
The qualitative relationship between mass and velocity in the calculation of momentum
Application of the law of the conservation of momentum to perform calculations involving collisions
Applying the kinetic energy equation to compare the size of this energy store before and after an interaction
Newton’s second law in the form force = change in momentum over time
Using equations to model the motion of an object
The principle of moments
To fall in line with the specification, there is a big emphasis on mathematical skills in this lesson and students are given guidance and assistance to ensure that they can access the work
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics C1 - C5, that will assessed on PAPER 3. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention:
The relative mass and charge of protons, electrons and neutrons
Using the Periodic table to calculate numbers of the sub-atomic particles
Writing elements and compounds in chemical symbol equations
Covalent structures
Drawing dot and cross diagrams for covalent and ionic compounds
The transfer of electrons during the formation of an ionic bond
Properties of metals and non-metals
States of matter
Conservation of mass and balancing symbol equations
Calculating the relative formula mass
Electrolysis of molten salts and aqueous solutions
Extraction of metals
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams and writing chemical formulae.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 3 exam.
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the six OCR Gateway A GCSE Combined Science papers. The mathematical element of the GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more.
The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “It doesn’t HURT to CONVERT”, “YOU DO THE MATH” and “FILL THE VOID”.
The following mathematical skills (in a scientific context) are covered in this lesson:
The use of Avogadro’s constant
Rearranging the formula of an equation
Calculating the amount in moles using mass and relative formula mass
Calculating the relative formula mass for formulae with brackets
Using the Periodic Table to calculate the number of sub-atomic particles in atoms
Changes to electrons in ions
Balancing chemical symbol equations
Empirical formula
Converting between units
Calculating concentration in grams per dm cubed and volumes of solutions
Calculating size using the magnification equation
Using the mean to estimate the population of a sessile species
Calculating percentages to prove the importance of biodiversity
Calculating percentage change
The BMI equation
Calculating the acceleration from a velocity-time graph
Recalling and applying the Physics equations
Understanding prefixes that determine size
Leaving answers to significant figures and using standard form
Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance.
Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics P5 - P7, that will assessed on PAPER 6. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many specification points as possible but the following sub-topics have been given particular attention:
Factors affecting the thinking, braking and stopping distance
The 7 recall and apply equations tested in PAPER 6
Using velocity-time graphs to calculate accelerations
The motions represented by the different lines on a velocity-time graph
Resultant forces
Speed and velocity as scalar and vector quantities
Converting between units
Sound as an example of a longitudinal wave
The EM spectrum
The meaning of amplitude, wavelength, frequency and period
Contact and non-contact forces
Attraction and repulsion in magnets
Magnetic fields
The extension of a spring
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as calculating acceleration and the mathematical elements
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 2/3 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 6 exam.
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics B1 - B5, that will assessed on PAPER 1. It has been specifically designed for students on the Pearson Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to take place at the local hospital where the students have to visit numerous wards and clinics and the on-site pharmacy so that the following sub-topics can be covered:
Cancer as the result of uncontrolled cell division
The production of gametes by meiosis
Mitosis and the cell cycle
Sex determination
The difference between communicable and non-communicable diseases
The pathogens that spread communicable diseases
Identification of communicable diseases
Treating bacterial infections with antibiotics
Evolution of antibiotic resistance in bacteria
Vaccinations
Genetic terminology
Genetic diagrams
Structures involved in a nervous reaction
A Reflex arc
Risk factors
Chemical and physical defences
Osmosis and percentage gain and loss
Fossils as evidence for human evolution
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for assistance sheets when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and evolution by natural selection.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 1 exam.
This bundle of 6 revision lessons challenges the students on their knowledge of the content of all of the topics that are detailed in the Edexcel GCSE Combined Science specification and can be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics.
The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content.
If you would like to see the quality of these lessons, download the paper 2, 4 and 6 revision lessons as these have been shared for free
This fully-resourced lesson with differentiated resources has been written to prepare students for the range of mathematical-based questions they may face on the two Edexcel GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding.
The mathematical skills covered in this lesson include:
Calculating the number of sub-atomic particles in atoms and ions
Writing chemical formulae for ionic compounds
Identifying isotopes
Calculating the relative atomic mass using isotope mass and abundance
Using Avogadro’s constant to calculate the number of particles
Calculating the relative formula mass
Calculating amount in moles using the mass and the relative formula mass
Balancing chemical symbol equations
Calculating reacting masses
Gas calculations using molar volume
Calculating concentration of solutions
Titration calculations
Deducing the empirical formula
Calculating energy changes in reactions
Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions
This lesson could be used with higher ability students on the Edexcel GCSE Combined Science course by taking out the sections which are not applicable.
This is a fully-resourced lesson which uses exam-style questions, quiz rounds, quick tasks and discussion points to challenge students on their understanding of the content of topics B4 - B6, that will assessed on PAPER 2. It has been specifically designed for students on the OCR Gateway A GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to take place at the hospital and the students will visit the various wards and health clinics day to check on their knowledge of the following sub-topics :
Cancer
The production of gametes by meiosis
The meaning of diploid and haploid
Sex determination
The difference between communicable and non-communicable diseases
Diseases caused by bacteria, viruses, fungi and protists
Treatment of bacterial infections using antibiotics
Evolution by natural selection in bacteria
Vaccinations
Genetic terminology
Inheritance of disorders caused by dominant and recessive alleles
Risk factors of non-communicable diseases
Ecosystems
The carbon cycle and the increase in carbon dioxide levels
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and interpreting the results and evolution by natural selection.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 2 exam.
This fully-resourced lesson has been written to prepare students for the range of mathematical-based questions that they may face on the two OCR GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding.
The mathematical skills covered in this lesson include:
Calculating the number of sub-atomic particles in atoms and ions
Writing chemical formulae for ionic compounds
Identifying isotopes
Using Avogadro’s constant to calculate the number of particles
Calculating the relative formula mass
Calculating amount in moles using the mass and the relative formula mass
Balancing chemical symbol equations
Calculating reacting masses
Gas calculations using molar volume
Calculating concentration of solutions
Titration calculations
Deducing the empirical formula
Calculating energy changes in reactions
Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions
This lesson could be used with higher ability students on the OCR GCSE Combined Science course by taking out the sections which are not applicable.