Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA Trilogy GCSE Biology (2016) - Principles of Homeostasis
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE Biology (2016) - Principles of Homeostasis

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a definition of homeostasis and pupils will then need to discuss in pairs the conditions that they think need to be controlled by the body. This leads on to revealing these factors and looking specifically at the way in which water can be lost and gained by the body. Pupils the complete a couple of questions on the topic. Next is a focus on temperature control in the body, pupils need to consider what might happen if the temperature rises too high or falls too low and come up with ideas about how this might affect the body. Having already covered enzymes hopefully they might have some clue about what might happen. You can reveal the answer and pupils then need to complete a small worksheet to summarise these ideas. Next pupils are challenged to think about what parts of our body control our reactions, pupils are asked to complete a challenge which gets them thinking about coordination and they will then write down any organs they think were involved with this process. The nervous and endocrine system are then introduced, pupils will need to copy and complete summary sentences to describe the main structures and functions of these two systems in controlling the body. Pupils will then complete an exam question on the differences between nervous and endocrine control, the mark scheme is provided for pupils to mark their work. Finally pupils look at the role of negative feedback in the body and how this works with the example of temperature control. Pupils will need to sketch a simple graph into their books and use labels provided to demonstrate how this process occurs. Again, the finished diagram is included so pupils can assess their own work. A plenary activity is to complete an exit card listing key words, facts and to pose a question about the work covered in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology – Classification
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology – Classification

(8)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with pupils being given a card sort of organisms, they will need to look at the pictures and try and decide how they would sort these organisms into groups, in other words how would they classify the organisms. Pupils will then be introduced to Linnaeus’ classification system and how this now influences the way we classify organisms, as well as explaining how modern technology can help us to group organisms. Pupils will then watch a video on classification, they will asked to think about, and write notes, on why classification is such an important process that scientists use. Now pupils are being introduced to the order of the classification system, pupils will be shown the order and then pupils will need to come up with their own mnemonic to help them remember this order. Pupils will then be introduced to the binomial naming system and the importance of this system, which they should be able to recount. The next activity involves pupils walking around the room, reading posters and they will need to use this information to complete a worksheet answering questions about the different kingdoms of the classification system. Once this is complete pupils can self or peer assess their work using the answers provided within the PowerPoint presentation Pupils will then complete an exam-style question on the topic of classification. This can then be self-assessed using the mark scheme provided. The plenary is for pupils to complete an exit card to demonstrate what they have learnt during the lesson, this can be handed in at the end of the lesson to the teacher to check student understanding. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Cloning HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Cloning HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by introducing pupils to the definition of a clone and outlining the different cloning techniques they will learn about in this lesson. Pupils will firstly learn about two techniques used to clone plants - cuttings and tissue culture. Pupils will learn about these two techniques and will need to complete the correct descriptions on a diagram demonstrating the steps involved with taking plant cuttings. Once this is complete the work can be self-assessed. The second part of the lesson focuses on adult cloning. Firstly pupils are talked through the process of embryo transplants using a diagram. Pupils will be provided with a worksheet with a flow diagram of the embryo transplant process but missing statements to describe the process. Pupils will need to choose the correct statements to go in these boxes, this work can be assessed using the answers provided once complete. Adult cell cloning is the other example of an animal cloning technique pupils will need to describe. Firstly, pupils will watch a video about Dolly the sheep and the adult cell cloning process, using this video they will need to answer some questions. This can be checked against the answers which will be provided. For the next activity pupils will be provided with the diagram of the sequence of events involved in the adult cell cloning process, pupils will be required to fill in the blanks to complete the descriptions of the steps involved. Once completed pupils can use the mark scheme to assess their work. The final activity focuses on the risks and benefits of adult cell cloning, pupils will be given a list of opinions about this cloning technique and they will need sort them into advantages/disadvantages in their books. The plenary activity is for pupils to pick a task: either write a twitter message about what they have learnt this lesson or unscramble anagrams to spell out 5 key words from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - Dialysis & kidney transplants HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Dialysis & kidney transplants HT

(4)
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier pupils. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the reasons why a patient might be suffering with kidney damage and introduced to the treatments pupils will be learning about this lesson: dialysis and kidney transplants. For the next part of the lesson pupils will then need to get into four groups, two groups will read information on the treatment of dialysis and two will read information on kidney transplants. Using this information pupils will answer questions in their book and once a group has finished with one of the treatments, they should swap with another groups and answer questions about the other treatment. This task should take 40 minutes in total, once finished pupils should self-assess their work using the answers provided on the PowerPoint presentation. The last activity is for pupils to answer an exam-style question on the function of the kidneys and treatment for patients with kidney disease, once completed pupils can mark their work using the mark scheme provided. The plenary task is a 3-2-1 task, pupils write down 3 facts, 2 key words and 1 question to test peers knowledge of the topic of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Organisation' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Organisation' lessons

14 Resources
This bundle of resources contains 12 lessons which meet all learning outcomes within the ‘Organisation’ unit for the NEW AQA Biology Specification. 1. Principles of organisation 2. Enzymes 3. The human digestive system 4. Digestive enzymes 5. The heart 6. The blood 7. Blood vessels 8. Helping the heart 9. Breathing & gas exchange 10. Plant tissues & organs 11. Transport in plants 12. Evaporation & transpiration The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks, 6-mark exam questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Biology - Genetic Engineering
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Genetic Engineering

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation and evolution' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a think > share > pair task for pupils to consider the definition of genetic engineering, once pupils have had a discussion about this the answer can be revealed. Pupils will then be shown a video about the steps involved with genetic engineering, pupils will need to answer questions whilst watching the video. Pupils can then check their work against the answers provided and correct anything they perhaps didn't get during the video. Pupils will then be given a diagram of the genetic engineering process, specifically using the example of the human gene for insulin being inserted into a bacterium. Pupils will need to copy the diagram into their books and choose the correct statements, from a jumbled list, to go with the correct steps. Pupils can self or peer-assess their work once this task is complete. The next part of the lesson is on the genetic modification of crops, pupils will firstly watch some videos which outlines various viewpoints of the growth and consumption of GM crops. Pupils should watch the videos and note down any benefits or problems they identify, a class discussion can follow this to ensure all students got the important points. The benefits of GM crops will then be highlighted to students with the aim to be used to feed the world's starving nations. After pupils have read through this they will be asked to come up statements that a collection of people might make about GM crops - an organic farmer, a charity worker for a world hunger organisation, a GCSE student and a GM scientist. The final activity is for pupils to complete the exam-style question on genetic engineering, once completed pupils can assess their work using the mark scheme provided. The plenary is for pupils to pick a task - either write a summary sentences including a list of key words or identify the questions for a list of answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Meiosis
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Meiosis

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a recap from the previous lesson showing gametes fusing during fertilisation and the changes in chromosome numbers. The first task is for pupils to watch a video and answer a set of questions whilst they are watching, once the video is complete they can assess their work using the mark scheme provided. Pupils will then be given a worksheet with a diagram of meiosis occurring and statements where pupils will need to fill in blanks to complete the correct steps in the process. Pupils can assess their work using the answers provided. Pupils will then be shown the different between diploid and haploid cells and how this can be depicted in a diagram, they will be shown the changes that occur going from two haploid gametes to a diploid zygote. The next activity is for pupils to sort statements into two columns - mitosis or meiosis. Once this activity has been completed pupils can mark their work using the answers available. Pupils will now complete a quick check, pupils will answer questions about the topic of meiosis into their books. For higher tier pupils they can be challenged by completing the questions at the back of their books without using their notes. Once completed the work can either be self-assessed or peer-assessed. The final activity is an exam-style question which higher ability pupils can complete at the back of their books, this can then be assessed usng the mark scheme provided. The plenary activity is for pupils to pick a plenary between summarising the work from the lesson in three sentences or writing a definition for a set of key words. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Infertility treatments
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Infertility treatments

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a think > pair > share task asking pupils to consider the different ways in which males, females or both could potentially find difficulty in conceiving a baby. Images are shown in order to prompt students to think about the anatomy of the male and female reproductive system. Answers will then be provided, pupils can check their ideas against those shown on the PowerPoint slide and red-pen their work. The next task is a fill-in-the-blank task on the role of FSH and LH during fertility treatments, pupils will need to consider the job of these two hormones in a healthy woman (covered during the menstrual cycle lesson) and then summarise how these hormones are used in fertility drugs. This work can be assessed using the answers provided once complete. The next part of the lesson focuses on how in vitro fertilisation works, pupils will be shown diagrams and descriptions of the stages involved with this process. Extra challenge questions are provided at the bottom of the worksheet should some students complete their work quickly. Pupils will then need to complete a worksheet o summarise these steps, once completed this work can be assessed using the mark schemes provided. Finally, students will need to consider the advantages and disadvantages of IVF. They will be given some information, one between two, they will need to use this information to summarise the pro's and con's of IVF. For the last task pupils will be given opinion cards in groups, they should read out the opinion cards and discuss which one's they agree with and why. They should then write a conclusion of their own opinions on IVF in their books, using as many valid scientific points as possible. The plenary task is for pupils to write a twitter message about what they have learnt that lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on Monoclonal Antibodies and their uses begins with a review of antibodies, plasma b-cells and memory b-cells. Students should also describe the humoral immune response to a pathogen. Students are then introduced to monoclonal antibodies through description on the slides and a short video. They should take notes and be prepared to fill in a diagram using the statements on the slide. A complete diagram is on the following slide for self-assessment. The next slides introduce the use of monoclonal antibodies, and then explain how they may be used to target cancer cells, test for pregnancy, and create medical diagnoses. Students will then watch another video which explains pregnancy tests. They will answer a few questions while watching and may self-assess to the answers on the next slide. Another included task asks students to complete a table explaining how monoclonal antibodies are used in various methods, by using information cards posted throughout the room. Using this information students will think > pair > share to discuss ethical issues regarding the production of monoclonal antibodies. They will watch three short vidoes to inform their discussion and should include risks, benefits, and impacts on both the individual and society in their answers. Some sample discussion points are available in the notes below the slide. To consolidate, students will be given a mixture of information cards to sort into a table of advantages and disadvantages of monoclonal antibodies. The plenary task is to create a three-question quiz to test their peers on today’s lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology – Adaptations
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology – Adaptations

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with students completing a think > pair > share on the types of environments in which organisms live around the world. After a short discussion with the class about the sorts of environments they are aware of, you can move the PowerPoint slide on to identify the types of biomes present on Earth. The next activity is a copy and complete activity on survival and reproduction as a recap, after pupils have completed this task they can self-assess their work using the answers provided. Next pupils will be introduced to adaptations, pupils will then watch a video on adaptations and answer questions using the information provided. Once they have completed this task they can mark their work using the answers provided. Pupils will now read information posters around the room (resources provided at the end of the lesson) and will use this to complete adaptation profile cards for animals and plants from arctic and desert conditions. The next part of the lesson will focus on extremophiles, pupils will read an article on extremophiles and will read through and underline the descriptions of particular extremophile adaptations. Once this work has been self-assessed pupils will move on to an exam-style question on adaptations, once this task has been completed pupils can either self-assess or peer-assess their work. The plenary task is for pupils to write three quiz questions on the topic of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Evidence for evolution: Fossils
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Evidence for evolution: Fossils

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to fossils, a definition of a fossil and a task for pupils to think > pair > share how the remains of dead organisms could be preserved for millions of years. After a short classroom discussion about the ideas pupils have come up with, pupils can move on to the next task. Pupils will each be given a different piece of information on the ways in which fossil remains can be preserved. Pupils can move around the room and discuss their cards of information and use each others to take notes on these processes. Pupils will then watch a video on how fossils are formed, using this video pupils will need to answer questions in their books. This work can be self-assessed using the marking criteria provided. The next part of the lesson focuses on why fossils do not provide a complete record of evolution. After this has been explained, using the information and images provided on the PowerPoint slide, pupils can complete some quick check questions on what they have learnt this lesson. Once complete pupils can mark their work using the answers provided. The final task is for pupils to complete a table to demonstrate the evolution of the horse, they will each be given a card of information on a particular stage of evolution. They can use each other to complete the full picture of how the horse evolved, completing their own table in chronological order. The last task is a set of exam-style questions on what pupils have learnt this lesson, they can answer these at the back of their books for an extra challenge. A mark scheme is provided for pupils to assess and correct their work once it is complete. The plenary task is for pupils to summarise what they have learnt this lesson as three facts, three key words and a question to test their peers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Deforestation & peat destruction
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Deforestation & peat destruction

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson outlines the definition of deforestation and some key facts and figures about the destruction of forests around the world. The next task is for pupils to discuss why they think rainforests may be being cut down & the consequences this might have on a local & global scale. The next two slides outlines the four main reasons why rainforests are being destroyed and some of the consequences of their destruction, pupils can check their work against the answers provided. The next task requires pupils to watch a video and answers questions using the information provided in the video, once they have completed the question they can asses their work using the answers provided. Pupils will now be required to complete a recap task on the carbon cycle, they will be given a worksheet which they will be asked to fill in using the captions provided on the PowerPoints slide. Once this has been completed pupils can assess their work using the answers on the PowerPoint slide. The next part of the lesson focuses on the importance of peat, firstly pupils will be given a set of information about peat bogs and they will be required to answer questions using this information. This work can be self or peer assessed once it has been completed. The final task is for pupils to answer an exam-style question on the carbon cycle and deforestation. Pupils can assess their work using the mark scheme provided. The plenary task is for pupils to choose words from a list of key words to formulate three summary sentences on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Recycling of materials
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Recycling of materials

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. The first part of this lesson will focus on a recap of some of the details learnt during the decay lesson, pupils are given a set of four multiple choice questions which they should answer in their books and then self-assess. The first task introduces recycling of materials in the ecosystem, pupils will need to read through a paragraph of information as a class. The slide will then be changed and pupils will need to try to recreate the paragraph as best as they can using the key words provided. Once completed the slide can be changed back to the initial paragraph for pupils to check and correct their work. The next part of the lesson is for pupils to look at the difference between a decomposers and detritivores, students will be given information in pairs and will need to teach each other about the organism card they have in their hands. Students will then try to write a description of each of the organisms in their books. The next part of the lesson focuses on the water cycle, firstly students will need to come up with as many processes as they can think of that contribute to the water cycle. Once this task has been assessed pupils will then be given a set of questions which they will need to answer whilst watching a video, once complete their answers can be assessed using the mark scheme provided. Using their answers from their previous tasks pupils will now need to match up the key words to the definition and the final task is for pupils to complete a diagram of the water cycle using the key words and definitions provided in the last task. The plenary task pupils will be given a set of 5 answers, it is up to the pupils to come up with 5 questions which may correspond to these 5 answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Food production
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Food production

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils are firstly asked to come up with a food chain for humans eating rice, then humans eating chickens and to consider the differences in energy efficiency between the two. This then leads onto the second slide which explains how shorter food chains mean more efficient food production. The second task is for pupils to think > pair > share ideas about methods farmers could employ to ensure animals gain new biomass at an efficient rate. Once pupils have written their ideas down in their books the answers can be revealed on the PowerPoint, students can check their work against the answers and correct anything they need to. The methods listed on the PowerPoint have disadvantages, pupils should then have a short discussion in pairs of what these negatives are before they are revealed. The next part of the lesson focuses on fish stocks, students are given some information and are asked to consider how we might sustainably manage fish stocks. Once students have some to discuss as groups and then as a class, pupils are given a set of questions they will need to answer whilst watching a video. Once this is complete students can self-assess their work. The last part of the lesson focuses on biotechnology in food production. Students will be given some information sheet in their groups and should use this information to answer a set of questions, once pupils have completed these questions they can self or peer-assess their work using the mark scheme provided. The very last task may be more suited to higher-ability classes. Pupils will be given a set of jumbled up sentences, students need to place the sentences in the correct order to describe the process of making mycoprotein, students can assess their work once complete. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, specifically for the higher-tier, biology only specification. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to the work of Gregor Mendel, students will firstly watch a video and answer questions using the information provided. Once finished with this introductory task pupils can self-assess their work against the marking criteria. The next task focuses on genetic diagrams drawn to represent the crosses Gregor Mendel carried out during his investigations. Pupils will be prompted to draw the genetic diagrams themselves to show the genotypes of offspring of the F1 and F2 generation of pea plants in the example given. There is a prompt which you can reveal for those students of a lower ability. Once this task is complete pupils can check their work against the answers which are provided. Now there is a quick check mid-plenary for pupils to consolidate knowledge of what they have learnt so far, a set of questions is provided and the mark scheme for pupils to check their work against. The next part of the lesson focuses on why Mendel’s important work was not wholly recognised within his lifetime, pupils can read an extract of information and use this to answer questions. Once complete pupils can self-assess their work using the answers provided. The final part of the lesson is looking at how Mendel’s work was imperative to the development of the double-helix model of DNA and subsequent genetic research and discoveries. Pupils will need to read a page of information, in pairs, and answer questions provided on the PowerPoint slide. For those pupils of a lower ability it may be easier to tag read the information and answer questions in groups. Once completed pupils can check their work against the success criteria provided. The final task is for pupils to answer an exam question on this topic, pupils can complete in their books (at the back of their books for an extra challenge) and assess their work using the mark scheme once complete. The plenary task is for pupils to come up with a questions that they would like to ask Mendel about his work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Inheritance, variation & evolution' HT lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Inheritance, variation & evolution' HT lessons

4 Resources
This bundle of resources contains 4 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Inheritance, variation & ecology’ unit for the NEW AQA Biology Specification. Lessons included: Cloning Mendel Theories of evolution Evolution & Speciation The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA Trilogy GCSE (2016) Biology - Transport in plants
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Transport in plants

(4)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by pupils observing a diagram of a phloem and a xylem vessel and discussing what the similarities and differences are between the two tissues. This can lead into a class discussion about the two structures. Next is a quick recap task, pupils should have already looked at the overall function of both of these vessels so pupils now need to complete sentences to describe the role of the xylem an phloem vessel in plants. The next activity is a video, pupils will given a set of questions and they will need to answer these questions using the video. Once finished they can self-assess their work using the answers provided on the PowerPoint. Next, pupils will need to draw two columns in their book entitled Xylem and Phloem and sort statements into these two columns, after this is completed they can assess their work. The last thing students will need to consider is why is transport so important in plants, pupils will discuss/brainstorm in their books why sugars, mineral ions and water are important to the plant. The answers can then be revealed to them. The final activity is a past-paper 6 mark question, pupils will need to attempt to answer this on their own, at the back of their books for an extra challenge! Plenary activity is to complete a summary of what the students have learnt that lesson, a list of key words will be provided to help them complete this task. All resources are included in the PowerPoint, any questions please ask me via the comments section. Any feedback of this lesson would be much appreciated :) thank you!
NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils are firstly given some information, in pairs, on how temperature can affect the rate of decay. They are asked to read through the information and complete a set of questions. Once this task is complete pupils can self-assess their work using the answers provided. The next task is for pupils to think > pair > share ideas about how you could stop or delay the decay process with food. Some images are provided on the PowerPoint slide as a prompt to help students, they can also use the information from the first task to help them come up with ideas. Once pupils have been given time to write their ideas down you can discuss as a group and then reveal the 5 main ways in which foods can be preserved. Pupils will then be given a set of information about each of these preservation methods, they need to use this information plus the information from the first task they completed to explain how each of the methods helps to prevent or delay the decay process. Pupils can then self or peer assess their work once complete. For the next task pupils are asked to use information posters places around the room or on their tables to answer a set of questions about decay & recycling. Once pupils have completed these questions they will need to assess their work using the answers provided. The very last task is an exam question that pupils can either complete in silence at the back of their books - higher ability - or perhaps use the work they have completed this lesson if they are lower ability. The plenary task is for students to write three sentences to summarise what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – HIV
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – HIV

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on the human immunodeficiency virus begins with a starter discussion on immunity and vaccination. Students should discuss the features of a successful vaccination program, and why vaccination cannot often eliminate a disease. Students are then introduced to the structure of HIV and its function as a retrovirus. To explain the infection process students will watch a short video while answering questions in their books. Answers are available on the following slide for self-assessment. The next task is a worksheet for students to label and correctly describe each stage of HIV infection and replication. They can self-asses to the next slide. Students will then discuss the process by which HIV causes the symptoms of AIDS. The following slides explain the function of antibiotics and explain why these are not suitable for treating viruses. In order to introduce the ELISA test, students will watch two short animations and answer questions in their books. Answers are on the following slide for self-assessment. They should take thorough notes in their book, on two diagrams of indirect and direct ELISA. The plenary is to write a tweet demonstrating their learning, including #keywords! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Specification - Drug Trials
SWiftScienceSWiftScience

NEW AQA GCSE Specification - Drug Trials

(1)
This is a resource for the NEW AQA GCSE Biology 'Infection & Response' unit. Please find further resources designed to meet specification points for the NEW AQA Biology, Chemistry and Physics specifications at: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly consider some traditional medicines such as digitalis for dropsy, willow trees for aspirin and penicillin mould. Pupils then consider the time and money taken to conduct a drug trial, as well as the stages that are involved. Pupils will watch a video to determine the definition of a placebo and a double-blind trial, pupils should also use the video to identify how clinical scientists maintain a fair test during a clinical trial. The next part of the lesson pupils will be introduced to what happens during the pre-clinical trial phase and the three stages of the clinical trial phase. Once students have learnt this they will need to match the key words to the definitions. They will also be given a set of 6 statements which they need to write in order, as a flow diagram, in their books to represent the stages of the drug trialling process. Pupils can then self-assess their work. There is a 6-mark question on what they have learnt this lesson. To really test pupils' knowledge they should try and complete this in the back of their books, perhaps giving them a set of key words as prompts. For a less able class, they should be able to use their notes from the lesson. Pupils can peer-assess their work using the marking criteria on the PowerPoint slide. All of the resources can be found on the PowerPoint slide, there is also extra resources at the end which could be used in an extra lesson or as a homework activity. Other lessons from the 'Infection and Response' unit can be found in my TES shop :)