I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to the differences between alternating and direct current, demonstrate with a diagram and a video. Students will then watch another video, using which they will answer a set of questions about alternating current, direct current and the use of oscilloscopes. Once this task has been completed students can self-assess their work using the mark scheme provided in the power point presentation.
The next task will require pupils to read a set of information about wiring within three-pin plugs before sketching a diagram of the plug and completing a table to summarise the colour and roles of the live, neutral and earth wires. Again, this work can be self-assessed using the mark scheme provided. Students will then need to sketch a diagram of an oscilloscope trace from an a.c. and d.c. supply and provide some notes about what these two traces are showing us.
The next part of the lesson will focus on the National Grid, firstly students will observe a simplified diagram of the route taken by an electric current from the power station to people’s homes, this route involves the electric current passing through a step-up and step-down transformer. Students will need to watch a video and then summarise the role of these two types of transformers. This task can be self-assessed against the answer provided in the PowerPoint presentation.
Next, the PowerPoint presentation explains why it is important to keep the voltage in the overhead cables very high and the current very low - to reduce resistance. Students will then need to complete a fill-in-the-blank task to sum up the main points about the National Grid.
The last part of the lesson will require pupils to observe oscilloscope traces for different a.c. supplies, firstly they will be shown how to work out the period, they will need to apply this to each oscilloscope trace. Then using the period, they will need to calculate the frequency for each trace - making sure they show all their working! Once this task is complete pupils can self or peer assess their work using the mark scheme provided.
The plenary task is an exit card, students are asked to write down three facts they have learned during the lesson, five key words and one question to test their peers knowledge.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a resource which meets specification points from the NEW AQA GCSE Physics 'Energy' SoW.
Other lessons from this SoW can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by pupils considering which of the energy resources are renewable or non-renewable. Pupils will then use the posters, which can be placed around the room or on pupils desks, to complete a table which identifies how the energy resource generates electricity and the advantages and disadvantages of each energy resource.
Pupils are then given a list of statements about all power stations which they need to cut and stick (or write) into two columns - advantages or disadvantages. **To challenge higher ability pupils this could be completed at the back of students books, so they cannot use information from the previous task**. Pupils can then peer-assess their work.
The plenary activity is a past-paper question which involves analysing some data on the usage of different power stations between two time periods. The mark scheme is included, pupils can use this to either peer-assess or self-assess their answer.
All resources are included. Please review, I would appreciate any feedback :). Thanks!
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 7 P2 ‘Sound’ Unit.
Lessons include:
Waves
Sound & Energy Transfer
Loudness & Pitch
Detecting Sound
Echoes & Ultrasound
The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
This is a lesson aimed at the NEW AQA Trilogy 'Particle models of matter' SoW for the new Physics specification.
The lesson begins by recapping on the definitions of melting point, boiling point and freezing point. Pupils will also be asked to consider why salt is added to a pan of water or to roads which may become icy to get them thinking about how impurities can affect the melting/boiling point of a substance.
This then leads on to the introduction of a temperature-time graph demonstrating changes in state, pupils will need to sketch the graph and then match statements to the correct numbered step on the graph.
The next slide introduces the idea of latent heat, this will be explored in more detail in a separate lesson. In the next activity pupils will use data to produce a graph and then answer questions on the data they have produced.
The plenary activity is a past-paper question, mark scheme provided for pupils to peer-assess their work.
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Molecules & Matter’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a recap on ‘Latent Heat’, including a definition and task which requires students to sketch a temperature-time graph of ice which has been taken out of the freezer and heated at a constant rate for a period of time. They will then need to match a set of statements to stages shown on the graph, this task will then be self-assessed using the mark scheme provided.
Students are then introduced to the idea of ‘Specific Latent Heat of Fusion’ - firstly students are given a description of what this tells us about a substance and then also the calculation. Students can take notes on this in their books, the next task then requires students to rearrange the equation they have been given to work out either energy (J) or mass (kg). Once students have discussed their ideas, the answers can be revealed and then pupils can work their way through a set of problems. This work can then be self-assessed using the mark scheme included in the PowerPoint.
The next part of the lesson now focuses on ‘Specific Latent Heat of Vaporisation’ - students are again given a description of what this tells us about a substance and also the calculation is provided. Students can take notes and also try to rearrange the equation in order to make energy or mass the subject. Students can discuss their ideas, the answers are revealed and they will then use these calculations to work their way through a set of problems.
Lastly, students will watch a video and will need to answer a set of questions whilst watching, this work can be checked against the answers provided. Then the very last task is a past-paper question on the topic, students can self-assess or peer-assess their work on this topic.
The plenary requires pupils to write a WhatsApp message to a friend, explaining what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy’.
More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by introducing the concept of ‘work done’, by using the example of a cyclist on a bike. The first task the pupils will need to complete is to produce a mind map of activities which require work to be done in order for something to happen. Students can discuss their ideas with their partners, they can write their ideas down into their books and then check their work against the answers provided in the PowerPoint.
Pupils are then shown the equation to calculate work done and they can work through a model question. You can work through this question with pupils on the board or ask them to try and complete it in their books, students can then self-assess their work.
The main activity for this lesson is a practical activity, the method for this practical is included in the PowerPoint presentation. Pupils will drag a wooden block across the desk a measured distance, the wooden block will be dragged initially with no elastic bands around it and then with one elastic band and finally with two elastic bands. Pupils will measure the force applied to drag the block using a Newton meter and record their results in a table (table included at the end of the PowerPoint). Using the measured distance and the force applied pupils can then work out the work done to drag each type of wooden block.
Students will now complete a ‘quick check’ task whereby students will need to complete a set of problems on ‘work done’ calculations. Once complete, students can self-assess their work against the answers provided.
Finally, students are given a worksheet of problems which have been completed by another pupil. Students will need to mark and correct the work, making corrections where necessary. This task can then be marked and assessed using the mark scheme provided.
The plenary task requires students to write a twitter message to explain what they have learned today, including #keywords.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction into how to draw electrical circuit diagrams, a diagram is shown and students need to identify the correct components using the labels provided.
The next part of the lesson focuses on the roles of different electrical components, students will each be given a different piece of information about a component. They can then walk around the room, sharing information with each other in order to complete a table on the components and their roles. This work can then be self-assessed once students have completed it.
The next task will assess students understanding of these components in a ‘Quick Check - Who am I ?’ task. Pupils will need to identify the component from the description given, they can write their answers in their books and then check their work against the answers when they are revealed.
Pupils will the be reminded of the rules on how to draw a circuit diagram, before being given a list of descriptions of different circuits. Students need to draw the circuits that are being described, the answers to this task can then be revealed using the mark scheme in the PowerPoint presentation.
The last part of the lesson will require pupils to construct electrical circuits using electrical equipment, three diagrams of electrical circuits are provided to students, they need to use these to construct their own circuits.
The plenary task requires pupils to complete a word search, once the words have been found they should write a definition of each of them
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a video on electrical current and charge flow, students will need to answer a set of questions whilst they are watching the video. This work can then be self-assessed using the mark scheme provided.
Next, is a ‘Quick Check’ task where students will need to answer a set of questions using the calculation for rate of charge flow. Students will need to show their working for each of these questions, the answers are provided on the PowerPoint presentation so students can check their work against the mark scheme, making corrections where needed.
Next, the lesson introduces the formula for calculating the energy transferred to components within a circuit. Students can take notes using the PowerPoint presentation and then using the formula they should work their way through another ‘Quick Check’ task. The mark scheme for this task is also included in the PowerPoint presentation for pupils to self or peer assess their work.
The final part of the lesson focuses on energy transfers within a circuit. Firstly, a worked problem is shown to students before they have a go at working their way through another ‘progress check’, using knowledge of what they have learned so far this lesson.
The plenary task requires pupils to write a twitter message about what they have learned in the lesson, this must include #keywords!
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This lesson starts with a recap on the differences between contact and non-contact forces. Students are given a list of forces and a variety of pictures, they need to match the correct name of the force with the correct picture and decide whether this is a contact or non-contact force. This task can self-assessed using the mark scheme provided.
Students are now introduced to the concept of a ‘reaction force’, with examples of a ball hitting the floor and a person walking along the ground. Students are shown a particle diagram to demonstrate what is happening. Next, students are introduced to the idea of an elastic cord or spring being affected by ‘extension’ and ‘tension’ forces. To assess students knowledge of what they have learned so far they will complete a progress check, a set of questions which students can answer in their books. This task can then be self-assessed using the mark scheme provided.
The last part of the lesson will look at Hooke’s law, students will conduct an investigation where they will investigate Hooke’s law. This practical involves students adding 1 Newton weights to a hanger which is attached to an elastic band. Every time a new weight is added, the distance between two marked point on the elastic band is measured. Students should carry out the investigation, record their results in a the table and then plot a graph of their results. Hopefully, students will draw a linear graph and be able to identify what Hooke’s law is from their results. Students can check their work against the results provided in the PowerPoint.
Finally, students are asked to complete a ‘Sentence Link-Up’ task, this is a literacy task which requires students to link three words in a summary sentence. This work can be self-assessed once it is complete using the answers provided on the PowerPoint.
The plenary requires students to write three quiz questions to test their knowledge of what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a homeschool pack designed for the KS3 Year 7 Science course, specifically the ‘P1.3 Light’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains four pages of information, to meet learning objectives within the Year 7 ‘Light’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
Light
Reflection
Refraction
The eye of the camera
Colour
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P1 ’Forces’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with a recap activity, students will need to sort a list of forces into two categories: contact and non-contact forces. This task can the be self-assessed using the mark scheme provided.
Next, students will recap on the non-contact forces that they have already learned about: gravitational forces, magnetic forces & electrostatic forces. Students will the be asked ‘What is a Force Field’ - they will then need to ‘Think > Pair > Share’ their ideas. After a short class discussion, the answer can be revealed to students and they could take notes on this in their books.
Students will carry out an investigation which helps them to visualise the force field which surrounds a magnet. Students will place small compasses at pin-point positions surrounding a bar magnet. They will need to draw an arrow to represent the direction that each compass is facing, lines can be drawn between each position which will show the overall force field of the bar magnet. This task can be self-assessed using the mark scheme provided on the PowerPoint.
Next, students are told the difference between weight and mass, they are also given the calculation for the weight of an object when you are given the gravitational field strength of the planet the object is found on, plus the mass of the object. Using this calculation students will then need to complete a set of questions on weight & mass, once complete students can self-assess their work using the mark scheme provided.
The last task is a ‘Progress Check’ task, whereby students will copy and compete the paragraph of information to summarise what they have learned this lesson.
The plenary task requires students to write a twitter message to sum up what the students have learned in the lesson, they will need to try to #keywords.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a resource aimed at the NEW GCSE Physics specification on ‘Energy’.
Other lessons from this series can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by considering objects with elastic potential energy stores. The calculation for the elastic potential energy store of an object is introduced and pupils can have a go at rearranging it themselves. **If lower ability - you can go through this on the board**
Pupils then copy and complete the table which leads them through the different stages to this calculation, they can then self-assess their work using a red pen.
The next two slides are questions pupils can complete to work out the elastic potential energy stores of various objects, these questions can be self-assessed.
The final activity is a past-paper question task (worksheet provided at the end of the PowerPoint) whereby pupils complete the questions, pass to their peers and peers will mark the work using the mark scheme provided on the PowerPoint. Peers should provide a positive comment, negative comment and something to improve.
All resources for this lesson are included at the end of the PowerPoint presentation.
Thanks & enjoy :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
Students will firstly recap on the differences between a solid, liquid and gas. Students will need to identify the correct particle diagram from a selection. This then leads into a description of how a sound wave is made, students are asked to ‘Think > Pair > Share’ their ideas about what is meant by terms ‘vacuum’ and ‘medium’ - the answers can then be revealed on the PowerPoint for students to mark their work.
Students will now watch a video of the ‘Bell Jar’ experiment, students will need to consider what is happening as they watch the video, they could try to write their ideas down in their books. An explanation of what they have observed can then be revealed using the PowerPoint.
Students will now watch a video on the movement of sound waves through solids, liquids and gases. Whilst watching the video they will need to answer a set of questions, the mark scheme for this task is included in the PowerPoint for students to assess their work once it is complete. This is followed by a worksheet of questions, the answers to this is also included in the PowerPoint for students to self-assess their work.
Students will then complete a progress check task, this is a copy-and-complete task which summarises what they have learned this lesson. This task can then be marked and corrected using the answers provided.
Lastly, students will be asked to consider which travels faster - light or sound. They will need to think about evidence to support their ideas. The answers can then be revealed - light is faster than sound, with evidence such as you see lightening before you hear thunder, also when a starting pistol is used you see the smoke before you hear the bang.
The plenary activity requires students to write down three facts, three key words and one question to test their peers knowledge of what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P2 ’Sound’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson starts with a definition of an ‘echo’ and how echoes can be produced by ship via sonar and by baby scanners via ultrasound. Students will then consider the ways in which echoes can be reduced and why this might be important in places such as theaters, concert walls & recording studios.
The first activity involves students using a range of materials (tissue paper, cardboard, cotton wool, bubble wrap, paper, plastic) to soundproof a margarine tub, which will hold a buzzer and a decibel meter. Each group can test how well they have soundproofed their margarine tub, perhaps a prize for the best one! Once this has been complete students can write an evaluation for their practical, they will need to consider which part of their practical were carried out well , how the findings could be improved and what they would do differently if it was done again.
Next, students will be given a piece of information on ‘Ultrasound’ - using this they will need to answer a set of questions in their books. This task can be self-assessed using the mark scheme provided in the books.
The last task is a crossword on ‘Sound’, students should use knowledge of that they have learned over the course of the topic on sound to answer the clues and complete the crossword. The task can be assessed using the mark scheme provided.
The plenary requires students to complete one of the selection of sentence starters to summarise what they have learned so far this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.1 unit on ‘Electricity & Magnetism’.
This lesson begins with an introduction to potential difference, students will watch a couple of minutes of a video and whilst watching will need to answer a set of questions. This task can then be self-assessed using the mark scheme provided on the PowerPoint presentation.
Next, students will be shown a circuit diagram, with two voltmeters connected - one parallel to a cell and one parallel to a light bulb. Students are asked to ‘Think > Pair > Share’ their ideas about whether the potential difference is higher across the battery or across the cell. Students will then carry out an investigation to find the answer the this question.
After this, students will complete a fill-in-the-blank task to summarise what they have learned so far this lesson. Once complete student can self-assess or peer-assess their work using the mark scheme provided.
Lastly, students will be given a set of questions relating to potential difference and also resistance, students will need to use what they have learned this lesson as well last lesson on resistance to complete these questions. This task can then be marked and assessed using the mark scheme provided. This is followed by a very quick anagram challenge, students will need to unscramble the anagrams to spell 6 key words related to the topic of electricity, students can write a definition for each key word if they have finished.
The plenary requires students to write a twitter message, summarising what they have learned this lesson, including #keywords.
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 P3 ’Light’.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with an introduction to refraction, students are provided with a description of this process along with a digram to help demonstrate the idea.
Next, students will investigate the process of refraction. Students will be provided with a worksheet, they will need to fill in the blanks on the worksheet to provide a full method for the practical investigation, this can be checked against the answers provided on the PowerPoint before students begin.
Once students have completed the practical investigation they will then need to complete a fill-in-the-blank task to conclude what they have found during the investigation.
A diagram of the process of refraction is then shown to students, with detailed labels explaining what is happening as light travels from air, into glass and back out the other side again. Students could sketch a copy of this into their books for notes, they will then summarise what they have learned so far with a cloze activity. This can be self-assessed using the mark scheme provided.
Lastly, students will complete a ‘Progress Check’ task - this is a set of questions for students to complete in their books which will assess what they have learned this lesson. The answers for this task are also included in the PowerPoint presentation so students can mark and correct their work once this task is complete.
The plenary task is for students to wrist a list of key words from the lessons they have covered on light.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the P2 1.2 unit on ‘Energy.
More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a video about the formation of fossil fuels and the impact of these energy resources on our environment. Students will watch the video and will need to answer a set of questions, once this task has been completed students will self-assess their work using the mark scheme provided.
Next, students considering which of the energy resources are renewable or non-renewable. Students will then use the posters, which can be placed around the room or on pupils desks, to complete a table which identifies how the energy resource generates electricity and the advantages and disadvantages of each energy resource.
Students are then given a list of statements about all power stations which they need to cut and stick (or write) into two columns - advantages or disadvantages. To challenge higher ability pupils this could be completed at the back of students books, so they cannot use information from the previous task. Pupils can then peer-assess their work.
The plenary activity is for students to summarise what they have learned this lesson three sentences.
All resources are included. Please review, I would appreciate any feedback :). Thanks!
All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Physics GCSE, particularly the 'Electricity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to the term ‘Ohmic conductor’, students are also shown a current-potential difference graph for a wire to demonstrate that in an Ohmic conductor the current is directly proportional to the potential difference.
Students will then conduct an investigation into whether the length of a wire will effect the resistance within the wire, students will complete the investigation using the method and once finished should draw a graph of their results and write a conclusion to summarise their findings. This work can be checked against answers provided within the PowerPoint presentation.
Next, students are shown a current-potential difference graph for a filament lamp and a diode. Students will be given a graph along with a set of questions to answer about these two graphs, once this task is complete students can self-assess their work using the mark scheme provided.
Students are then shown a diagram of a thermistor and light-dependent resistor and provided with an explanation of what happens to the resistance of these two components when the temperature and light are increased, respectively.
The last task is a past-paper exam question, those higher-ability students should try and complete these questions without looking at their notes. Once complete, the work can be either self or peer assessed using the mark scheme provided.
The plenary task requires pupils to complete one of the sentence starters to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Physics GCSE, particularly the ‘Radioactivity’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson starts with a video about the developments in the atomic model starting from Greek philosophers to 20th Century scientists. Pupils are given a set of questions to answer whilst watching the video, this work can be self-assess using answers provided.
Next, pupils are given a set of cards with bits of information about different scientists involved in the development of the model of the atom. Pupils should put these cards in order and then use the information on the cards to formulate a timeline in their books, they should use the information on the cards to add labels describing the work of each of the scientists.
Students will now be shown a video on ‘Scattering Experiments & the Development of the Nuclear Model’ - students will need to answer a set of questions whilst watching the video. The answers to the video are included in the PowerPoint so students can self-assess their work once it is complete.
A diagram of the ‘Gold Foil Experiment’ is then shown to pupils, along with a summary of conclusions drawn from this investigation. Students will then be given a worksheet to complete, summarising the findings of this investigation and how it contributed to the development of the Nuclear Model of the atom. The mark scheme to this task is also included in the PowerPoint for pupils to assess their work.
The plenary task is a word search, students will need to find a list of key words on the topic of ‘radioactivity’.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a homeschool pack designed for the KS3 Year 7 Science course, specifically the ‘P1.4 Space’ unit of work.
For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
This comprehensive pack contains four pages of information, to meet learning objectives within the Year 7 ‘Space’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers.
The pack covers the following topics:
The night sky
The Solar System
The Earth
The Moon
Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.