Hero image

Teach Science & Beyond

Average Rating4.79
(based on 28 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

134k+Views

86k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Naming  Aromatic Compounds (Aromatic Chemistry)
TeachScienceBeyondTeachScienceBeyond

Naming Aromatic Compounds (Aromatic Chemistry)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on naming and drawing aromatic compounds **By the end of this lesson KS5 students should be able to: **1. State the IUPAC name of substituted aromatic compounds **2. Construct the structure of aromatic compounds based on their IUPAC names **3. Analyse the correct numbering system for di and trisubstituted aromatic compounds The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Analytical Techniques (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Analytical Techniques (AS Chemistry)

3 Resources
3 Full Lesson Bundle covering Analytical Techniques (mass spectrometry, IR spectroscopy and combined techniques in organic chemistry) . These lessons follow the OCR specification Lesson 1: Mass Spectrometry in Organic Chemistry **1) Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass **2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures Lesson 2: IR Spectroscopy **1) To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses **2)To understand how infrared spectroscopy works **3)To understand the application of infrared spectroscopy **4) To interpret IR spectra Lesson 3: Combined Spectroscopic Techniques **1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Redox Reactions
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Redox Reactions

3 Resources
3 fully planned lessons (including starter questions and main work tasks) covering the AS Chemistry chapter on Redox Reactions; Lesson 1: Oxidation States Lesson 2: Half Equations Lesson 3: Forming Redox Equations By the end of lesson 1 students will: Recall the rules for oxidation states of uncombined elements and elements in compounds Determine the oxidation states of elements in a redox reaction Identify what substance has been reduced or oxidised in a redox reaction By the end of lesson 2 students will: Understand what a half equation is Explain what a redox equation is Construct half equations from redox equations By the end of lesson 3 students will: Identify what substance has been reduced or oxidised in a redox reaction Construct balanced half equations by adding H+ and H2O Construct full ionic redox equations from half equations Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
The Equilibrium Constant Kc (Part 1)
TeachScienceBeyondTeachScienceBeyond

The Equilibrium Constant Kc (Part 1)

(1)
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on **The Equilibrium Constant Kc (Part 1) - AS OCR Chemistry (Year 12) ** *Note: A full lesson on the Equilibrium Constant Kc (Part 2) -A Level OCR Chemistry (Year 13) is also available * By the end of the lesson students should be able to: To construct expressions for the equilibrium constant Kc for homogeneous reactions To calculate the equilibrium constant Kc from provided equilibrium concentrations To estimate the position of equilibrium from the magnitude of Kc To know the techniques and procedures used to investigate changes to the position of equilibrium for changes in concentration and temperature Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
OCR A Level Chemistry Specification Checklist
TeachScienceBeyondTeachScienceBeyond

OCR A Level Chemistry Specification Checklist

(0)
Student friendly personalised learning checklist for OCR A level Chemistry (H432) This resource includes key specification statements for papers 1-3 This resource is one Excel document with tabs for: Module 2: Foundations in Chemistry Module 3: Periodic Table and Energy Module 4: Core Organic Chemistry Module 5: Physical Chemistry and Transition Elements Module 6: Organic Chemistry and Analysis The exam paper number linked to each topic can be found in the left hand corner of each checklist to aid student exam revision.
A level Chemistry: Reaction Mechanisms (AQA)
TeachScienceBeyondTeachScienceBeyond

A level Chemistry: Reaction Mechanisms (AQA)

(0)
27 flashcards on Reaction Mechanisms from both Year 12 and 13 content. Suitable for the AQA A level Chemistry 7405 Specification Reaction mechanisms included are: Free Radical Substitution Nucleophilic Substitution Electrophilic Addition Elimination Electrophilic Substitution Nucelophilic Addition Nucelophilic Addition-Elimination PRINTING: These can be printed as A6 flashcards (1/4 size of A4) by printing four pages per sheet
A Level Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

A Level Organic Chemistry (OCR)

18 Resources
17 well structured chemistry lessons plus a BONUS revision summary covering topics in Module 6 of the OCR Specification: **Organic Chemistry ** *Note: Lessons on Analysis: chromatography, qualitative analysis of functional groups and NMR spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Benzene and its Structure To describe the Kekulé model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the Kekulé model of benzene and the delocalised model of benzene To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Lesson 2: Naming Aromatic Compounds To state the IUPAC name of substituted aromatic compounds Construct the structure of aromatic compounds based on their IUPAC names To analyse the correct numbering system for di and trisubstituted aromatic compounds Lesson 3: The Reactions of Benzene To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Lesson 4: Phenols To recall and explain the electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Lesson 5: Directing Groups in Aromatic Compounds To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Lesson 6: Reactions of Carbonyl Compounds To understand the oxidation of aldehydes using Cr2O72-/H+ to form carboxylic acids To understand nucleophilic addition reactions of carbonyl compounds with: NaBH4 to form alcohols HCN (NaCN (aq)/H+ (aq)) to form hydroxynitriles To construct the mechanism for nucleophilic addition reactions of aldehydes and ketones with NaBH4 and HCN Lesson 7: Testing for Carbonyl Compounds To understand the use of Tollens’ reagent to: (i) detect the presence of an aldehyde group (ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver To understand the use of 2,4-dinitrophenylhydrazine to: (i) detect the presence of a carbonyl group in an organic compound (ii) identify a carbonyl compound from the melting point of the derivative Lesson 8: Carboxylic acids and Esters To explain the water solubility of carboxylic acids in terms of hydrogen bonding To recall the reactions in aqueous conditions of carboxylic acids with metals and bases (including carbonates, metal oxides and alkalis) To know the esterification of: (i) carboxylic acids with alcohols in the presence of an acid catalyst (ii) acid anhydrides with alcohols To know the hydrolysis of esters: (i) in hot aqueous acid to form carboxylic acids and alcohols (ii) in hot aqueous alkali to form carboxylate salts and alcohols Lesson 9: Acyl Chlorides and Their Reactions To know how to name acyl chlorides To recall the equation for the formation of acyl chlorides from carboxylic acids using SOCl2 To construct equations for the use of acyl chlorides in the synthesis of esters, carboxylic acids and primary and secondary amides Lesson 10: Introduction to Amines To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Lesson 11: Preparation of Amines To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Lesson 12: Amino Acids and Their Reactions To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Lesson 13: Chirality To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Lesson 14: Amides To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Lesson 15: Condensation Polymers To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Lesson 16: Practical Skills in Organic Synthesis (Yr13) To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Lesson 17: Synthetic Routes in Organic Synthesis (Y13) To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of organic molecules containing several functional groups To create multi-stage synthetic routes for preparing organic compounds Synthetic Routes Revision Summary A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Acid-Base Titration Calculations (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Acid-Base Titration Calculations (AS Chemistry)

(0)
A complete A Level Chemistry KS5 lesson including starter activity, main work task and answers on acid-base titration calculations By the end of this lesson KS5 students should be able to: To apply mole calculations to complete structured titration calculations, based on experimental results of familiar acids and bases. To apply mole calculations to complete non-structured titration calculations, based on experimental results of non-familiar acids and bases All tasks have worked out answers which will allow students to self assess their work in the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Acid-Base Titrations (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Acid-Base Titrations (A Level Chemistry)

2 Resources
2 Full Lesson Bundle covering the topic of Acid-Base Titrations for the OCR Specification (Year 12). See below for the lesson objectives. Lesson 1: Acid-Base Titration Procedures By the end of the lesson students will be able to: Outline the techniques and procedures used when preparing a standard solution of required concentration Outline the techniques and procedures used when carrying out acid–base titrations Determine the uncertainty of measurements made during a titration practical **Lesson 2: Acid-Base Titration Calculations ** By the end of the lesson students will be able to: Apply mole calculations to complete structured titration calculations, based on experimental results of familiar acids and bases. Apply mole calculations to complete non-structured titration calculations, based on experimental results of non-familiar acids and bases Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Mass Spectroscopy
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Mass Spectroscopy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectroscopy. Suitable for OCR AS Chemistry By the end of this lesson KS5 students should be able to: To determine the relative atomic masses and relative abundances of the isotope using mass spectroscopy To calculate the relative atomic mass of an element from the relative abundances of its isotope Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Moles & Volumes (Solutions & Gas Volumes)
TeachScienceBeyondTeachScienceBeyond

Moles & Volumes (Solutions & Gas Volumes)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on moles and volumes (solutions and gas volumes) By the end of the lesson students should be able to: To calculate the amount of substance in mol, involving solution volume and concentration To understand the terms dilute, concentrated and molar To explain and use the term molar gas volume To calculate the amount of substance in mol, involving gas volume Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Periodicity: Melting Points
TeachScienceBeyondTeachScienceBeyond

Periodicity: Melting Points

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Periodicity: Melting Points By the end of this lesson KS5 students should be able to: To describe the trend in structure from giant metallic to giant covalent to simple molecular lattice To explain the variation in melting points across period 2 & 3 in terms of structure and bonding Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Amides
TeachScienceBeyondTeachScienceBeyond

Amides

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amides By the end of this lesson KS5 students should be able to: To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
GCSE Chemistry: Moles (Higher Tier)
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Moles (Higher Tier)

(0)
A complete lesson including starter activity and mini AfL questions on calculating moles and the number of atoms/particles/molecules using the mole equation. Suitable for AQA GCSE Chemistry and Higher tier combined Science The lesson begins with a short starter task (DO NOW) on previous KS4 knowledge about relative atomic mass of elements, calculating the relative molecular mass of compounds and balancing equations By the end of this lesson KS4 students should be able to: Describe the measurement of amounts of substance in moles Calculate the number of moles in a given mass Calculate the mass of a given number of moles The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry Required Practical 1 (AQA):  Making a volumetric solution & an acid-base titration
TeachScienceBeyondTeachScienceBeyond

AS Chemistry Required Practical 1 (AQA): Making a volumetric solution & an acid-base titration

(0)
Whole lesson on planning for the AQA KS5 chemistry required practical 1 - how to make up a volumetric solution and how to carry out an acid-base titration In this lesson the teacher will be able to: address the aims of the required practical address what key practical skills will be assessed How students should carry out the practical How students should record results and make observations Post experimental quesitons are also included which will allow students to determine the unknown concentration of the base and to also consider issues with error in the experiment It’s recommended that the teacher carries out a demonstration during this lesson or has the equipment pieces on display for students to see Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Lattice Enthalpy
TeachScienceBeyondTeachScienceBeyond

Lattice Enthalpy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Lattice Enthalpy. Suitable for the OCR Specification By the end of this lesson KS5 students should be able to: To explain the term lattice enthalpy 2.To understand the factors that determine the size of lattice enthalpy 3.To explain the terms standard enthalpy change of formation and first ionisation energy The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Aromatic Compounds (OCR)
TeachScienceBeyondTeachScienceBeyond

Aromatic Compounds (OCR)

5 Resources
5 Full Lesson Bundle which covers the lessons on aromatic compounds from the OCR A Level Chemistry Specification. See below for the lesson objectives Lesson 1: Benzene and its Structure To describe the Kekulé model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the Kekulé model of benzene and the delocalised model of benzene To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Lesson 2: Naming Aromatic Compounds State the IUPAC name of substituted aromatic compounds Construct the structure of aromatic compounds based on their IUPAC names Analyse the correct numbering system for di and trisubstituted aromatic compounds Lesson 3: The Reactions of Benzene To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Lesson 4: Phenols To recall and explain the electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol (j) To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Lesson 5: Directing Groups in Aromatic Compounds To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Phenols
TeachScienceBeyondTeachScienceBeyond

Phenols

(0)
A well structured KS5 Lesson on Phenols. The lesson contains a starter activity, mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To recall and explain the electrophilic substitution reactions of phenol:  with bromine to form 2,4,6-tribromophenol (ii)  with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol (j)  To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons,including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Ionisation Energy
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Ionisation Energy

2 Resources
2 Lesson bundle covering the AS Chemistry topic on Ionisation Energy. Suitable for OCR, AQA and Edexcel Lesson 1: Ionisation Energy (Part 1) Define the term ‘first ionisation energy’ and successive ionisation energies Describe the factors affecting ionisation energy 3)Explain the trend in successive ionisation energies of an element Lesson 2: Ionisation Energy (Part 2) Explain the trend in first ionisation energies down a group Explain the trend in first ionisation energies across period 2 Explain the trend in first ionisation energies across period 3 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
The Equilibrium Constant Kp
TeachScienceBeyondTeachScienceBeyond

The Equilibrium Constant Kp

(1)
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on The Equilibrium Constant Kp By the end of the lesson students should be able to: To use the terms mole fraction and partial pressure To construct expressions for Kp for homogeneous and heterogeneous equilibria To calculate Kp including determination of units To understand the affect of temperature, pressure, concentration and catalysts on Kp and controlling the position of equilibrium Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above