Hero image

Teach Science & Beyond

Average Rating4.79
(based on 28 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

134k+Views

86k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Core Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

Core Organic Chemistry (OCR)

20 Resources
20 well structured chemistry lessons covering topics in Module 4 of the OCR Specification: **Core Organic Chemistry ** *(Note: Lessons on Analytical techniques: IR and Mass spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Organic and Inorganic Compounds To describe what organic and inorganic compounds are 2 To compare the strength of bonds in organic and inorganic compounds To explain the molecular shape of carbon containing compounds Lesson 2: Naming organic compounds To know the IUPAC rules for naming alkanes and alkenes To know the IUPAC rules for naming aldehyde, ketones and carboxylic acids To construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae Lesson 3: Types of formulae To know what is meant by the terms empirical and molecular formula To compare the terms general, structural, displayed and skeletal formula To construct organic compounds using either of the 6 types of formulae Lesson 4: Isomers To describe what structural isomers and stereoisomers are To construct formulae of structural isomers of various compounds To construct formulae of E-Z and cis-trans stereoisomers of alkenes Lesson 5: Introduction To Reaction Mechanisms To understand that reaction mechanisms are diagrams that illustrate the movement of electrons using curly arrows To understand where curly arrows being and where they end To identify and illustrate homolytic and heterolytic bond fission in reaction mechanisms Lesson 6: Properties of Alkanes To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate To explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion To describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces Lesson 7: Combustion of Alkanes To understand why alkanes are good fuels To recall the equations (both word and symbol) for complete combustion of alkanes To recall the equations (both word and symbol) for incomplete complete combustion of alkanes Lesson 8: Free Radical Substitution of Alkanes To know what a free radical is To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Lesson 9: The Properties of Alkenes 1.To know the general formula of alkenes 2. To explain the shape and bond angle around each carbon atom of a C=C bond 3. To describe how π and σ bonds are formed in alkenes Lesson 10: Addition Reactions of Alkenes To know what an electrophile is To describe what an electrophilic addition reaction is To outline the mechanism for electrophilic addition Lesson 11: Addition Polymerisation To know the repeat unit of an addition polymer deduced from a polymer To identify the monomer that would produce a given section of an addition polymer To construct repeating units based on provided monomers Lesson 12: Dealing with Polymer Waste To understand the benefits for sustainability of processing waste polymers by: Combustion for energy production Use as an organic feedstock for the production of plastics and other organic chemicals Removal of toxic waste products such as HCl To understand the benefits to the environment of development of biodegradable and photodegradable polymers Lesson 13: Properties of Alcohols To identify and explain the intermolecular forces that are present in alcohol molecules To explain the water solubility of alcohols, their low volatility and their trend in boiling points To classify alcohols as primary, secondary or tertiary alcohols Lesson 14: Oxidation of Alcohols To know that alcohols can undergo combustion reactions in the presence of oxygen To know alcohols can be oxidised by an oxidising agent called acidified potassium dichromate To know the products and reaction conditions for the oxidation of primary alcohols to aldehydes and carboxylic acids To know the products and reaction conditions for the oxidation of secondary alcohols to ketones Lesson 15: Other Reactions of Alcohols To know the elimination of H2O from alcohols in the presence of an acid catalyst and heat to form alkenes To know the substitution of alcohols with halide ions in the presence of acid to form haloalkanes Lesson 16: Haloalkanes and their Reactions (part 1) To define and use the term nucleophile To outline the mechanism for nucleophilic substitution of haloalkanes Lesson 17: Haloalkanes and their Reactions (part 2) To explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds To describe how the rate of hydrolysis of haloalkanes can be determined by experiment using water, ethanol and silver nitrate solution Lesson 18: Haloalkanes and the environment To know how halogen radicals are produced from chlorofluorocarbons (CFCs) by the action of UV radiation To construct equations for the production of halogen radicals from CFCs To construct equations for the catalysed breakdown of ozone by Cl. and other radicals (NO.) Lesson 19: Practical skills for organic synthesis To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux To understand the techniques for preparation and purification of an organic liquid including: Lesson 20: Synthetic routes in organic synthesis To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of an organic molecule containing several functional groups To create two-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Kinetics: Concentration-Time Graphs (part 2)
TeachScienceBeyondTeachScienceBeyond

Kinetics: Concentration-Time Graphs (part 2)

(1)
A structured Year 13 KS5 lesson ( lesson 2 of 2) on Concentration-Time Graphs. Lesson includes starter activity, worked examples and Afl quiz By the end of this lesson KS5 students should be able to: To deduce zero & first order reactants from concentration-time graphs To calculate the rate constant of a first order reactant using their half-life Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
The Acid Dissociation Constant (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

The Acid Dissociation Constant (A Level Chemistry)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the acid dissociation constant Ka By the end of this lesson KS5 students should be able to: To understand the acid dissociation constant, Ka, as the extent of acid dissociation To know the relationship between Ka and pKa To convert between Ka and pKa Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Neutralisation & Titration Curves
TeachScienceBeyondTeachScienceBeyond

Neutralisation & Titration Curves

(0)
A structured KS5 lesson including starter activity, AfL work tasks and plenary task all with answers on Neutralisation & Titration Curves By the end of this lesson KS5 students should be able to: To interpret titration curves of strong and weak acids and strong and weak bases To construct titration curve diagrams of strong and weak acids and strong and weak bases Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
pH of Weak Acids (OCR)
TeachScienceBeyondTeachScienceBeyond

pH of Weak Acids (OCR)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the pH of weak acids By the end of this lesson KS5 students should be able to: To recall the expression of pH for weak monobasic acids To calculate the pH of weak monobasic acids using approximations To analyse the limitations of using approximations to Ka related calculations for ‘stronger’ weak acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
IR Spectroscopy
TeachScienceBeyondTeachScienceBeyond

IR Spectroscopy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on IR Spectroscopy. Suitable for OCR AS Chemistry. By the end of the lesson, students should be able to: To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses 2)To understand how infrared spectroscopy works 3)To understand the application of infrared spectroscopy To interpret IR spectra Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Covalent and Dative Covalent Bonding
TeachScienceBeyondTeachScienceBeyond

Covalent and Dative Covalent Bonding

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Covalent and Dative Covalent Bonding By the end of this lesson KS5 students should be able: To know covalent bonding as electrostatic attraction between a shared pair of electrons and the nucleus To construct dot and cross diagrams of molecules and ions to describe single and multiple covalent bonding To apply the term average bond enthalpy as a measurement of covalent bond strength To know what a dative covalent bond is To construct dot and cross diagrams of molecules and ions to describe dative covalent bonding Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Acid-Base Titration Procedures
TeachScienceBeyondTeachScienceBeyond

Acid-Base Titration Procedures

(0)
A complete KS5 lesson including starter activity, main work task and answers on acid-base titration procedures By the end of this lesson KS5 students should be able to: Outline the techniques and procedures used when preparing a standard solution of required concentration Outline the techniques and procedures used when carrying out acid–base titrations Determine the uncertainty of measurements made during a titration practical All tasks have worked out answers which will allow students to self assess their work in the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
The Structure of The Periodic Table
TeachScienceBeyondTeachScienceBeyond

The Structure of The Periodic Table

(0)
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on The Structure of The Periodic Table By the end of this lesson KS5 students should be able to: To know how the periodic table is arranged To describe the periodic trend in electron configurations across periods 2 and 3 To classify elements into s, p and d blocks The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Metallic Bonding and Structure
TeachScienceBeyondTeachScienceBeyond

Metallic Bonding and Structure

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Metallic Bonding and Structure By the end of this lesson KS5 students should be able to: To describe the structure of metals To explain metallic bonding as strong electrostatic attraction between cations and delocalised electrons To explain the physical properties of giant metallic structures Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Amino Acids And Their Reactions
TeachScienceBeyondTeachScienceBeyond

Amino Acids And Their Reactions

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amino Acids And Their Reactions By the end of this lesson KS5 students should be able to: To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Chirality
TeachScienceBeyondTeachScienceBeyond

Chirality

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Chirality By the end of this lesson KS5 students should be able to: To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
GCSE CHEMISTRY REQUIRED PRACTICAL: Making Salts
TeachScienceBeyondTeachScienceBeyond

GCSE CHEMISTRY REQUIRED PRACTICAL: Making Salts

(0)
A complete lesson including starter activity, risk assessment and post practical plenary questions on Chemistry Required Practical :Preparing a pure, dry sample of a soluble salt from an insoluble oxide or carbonate Lesson includes lab report for students to fill in By the end of this lesson KS4 students should be able to: → Describe a practical procedure for producing a salt from a solid and an acid → Explain the apparatus, materials and techniques used for making the salt → Describe how to safely manipulate apparatus and accurately measure melting points This lesson should be taught as a practical lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: Relative Formula Mass
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Relative Formula Mass

(0)
A well structured lesson including starter activity and mini AfL questions on relative atomic mass and relative formula mass. Suitable for AQA GCSE Chemistry and Combined Science (higher tier and foundation) The lesson begins with a short starter task (DO NOW) on understanding the numbers in the periodic table By the end of this lesson KS4 students should be able to: To identify the relative atomic mass of an element from the periodic table To be able to define the term relative atomic mass To calculate relative formula masses from atomic masses The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Isomers (OCR)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Isomers (OCR)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on isomers (structural isomers and stereoisomers). Suitable for the OCR specification By the end of the lesson students should be able to: To describe what structural isomers and stereoisomers are To construct formulae of structural isomers of various compounds To construct formulae of E-Z and cis-trans stereoisomers of alkenes Students will be able to take rich notes on isomers, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding on isomers by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Standard Electrode & Cell Potentials (part 1)
TeachScienceBeyondTeachScienceBeyond

Standard Electrode & Cell Potentials (part 1)

(0)
A structured KS5 lesson including starter activity and AfL work tasks with answers included on Standard Electrode & Cell Potentials (Part 1 of 2) By the end of this lesson KS5 students should be able: **To describe techniques and procedures used for the measurement of : **i) Cell potentials of metals or non-metals in contact with their ions in aqueous solution **ii) Ions of the same element in different oxidation states in contact with a Pt electrode The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Group 2 Elements
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Group 2 Elements

(0)
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions with answers on Group 2 Elements By the end of this lesson KS5 students should be able to: Know group 2 elements lose their outer shell s2 electrons to form +2 ions State and explain the trend in first and second ionisation energies of group 2 elements and how this links to their relative reactivities with oxygen, water and dilute acids Construct half equations of redox reactions of group 2 elements with oxygen, water and dilute acids and to identify what species have been oxidised and reduced using oxidation numbers Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Buffer Solutions (OCR)
TeachScienceBeyondTeachScienceBeyond

Buffer Solutions (OCR)

4 Resources
3 Full Lesson Bundle (including a FREE revision lesson!) on Buffer Solutions. This bundle covers the OCR A Level Chemistry specification. Please review the learning objectives below. **Part 1: Explaining How Buffer Solutions Work To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base To describe how a buffer solution is formed using weak acids, salts and strong alkalis To explain the role of the conjugate acid-base pair in an acid buffer solution such as how the blood pH is controlled by the carbonic acid–hydrogencarbonate buffer system **Part 2: Buffer Solution Calculations (Part 1) To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution **Part 3: Buffer Solution Calculations (Part 2) To calculate the pH of a weak acid-strong alkali buffer solution To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution Part 4: BONUS Revision Lesson To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Intermolecular Forces (OCR Chemistry)
TeachScienceBeyondTeachScienceBeyond

Intermolecular Forces (OCR Chemistry)

2 Resources
Two lesson bundle covering the three types of intermolecular forces for the OCR Specification (but also applicable to AQA and Edexcel specification) Lesson 1: Intermolecular Forces (Part 1) covers London forces and Permanent Dipole-Dipole Interactions. In lesson 1 students will: Understand intermolecular forces based on induced-dipole interactions and permanent dipole-dipole interactions Explain how intermolecular forces are linked to physical properties such as boiling and melting points Compare the solubility of polar and non-polar molecules in polar and non-polar solvents Lesson 2: Intermolecular Forces (part 2) covers Hydrogen Bonding. In lesson 2 students will: Understand hydrogen bonding as intermolecular forces between molecules containing N, O or F and the H atom of –NH, -OH or HF Construct diagrams which illustrate hydrogen bonding Explain the anomalous properties of H2O resulting from hydrogen bonding The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Synthesis of Hydroxynitriles
TeachScienceBeyondTeachScienceBeyond

Synthesis of Hydroxynitriles

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the synthesis of hydroxynitriles. Suitable for AQA A level Chemistry. By the end of this lesson KS5 students should be able to: To know how to name hydroxynitriles To understand the steps of the nucleophilic addition reaction mechanism to form hydroxynitriles To be able to explain how a racemic mixture of hydroxynitriles can be produced Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above