Hero image

Teach Science & Beyond

Average Rating4.79
(based on 28 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

133k+Views

85k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Naming  Aromatic Compounds (Aromatic Chemistry)
TeachScienceBeyondTeachScienceBeyond

Naming Aromatic Compounds (Aromatic Chemistry)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on naming and drawing aromatic compounds **By the end of this lesson KS5 students should be able to: **1. State the IUPAC name of substituted aromatic compounds **2. Construct the structure of aromatic compounds based on their IUPAC names **3. Analyse the correct numbering system for di and trisubstituted aromatic compounds The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Kinetics (OCR)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Kinetics (OCR)

3 Resources
3 Full Lesson Bundle which covers the Kinetics chapter from the OCR AS Level Chemistry Specification (may also suitable for the AQA and Edexcel Spec- see Learning Objectives below to confirm) Lesson 1: Collision Theory & Rates of Reaction **1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions **2. To calculate the rate of reaction using the gradients of a concentration-time graph **3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration Lesson 2: Catalysts **1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions **2. To calculate the rate of reaction using the gradients of a concentration-time graph **3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration Lesson 3: The Boltzmann Distribution **1. To draw a labelled diagram of the Boltzmann distribution **2. To explain qualitatively the Boltzmann distribution and its relationship with activation energy **3. To explain how temperature changes and catalytic behaviour effect the proportion of molecules exceeding the activation energy and hence the reaction rate using Boltzmann distributions Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Phenols
TeachScienceBeyondTeachScienceBeyond

Phenols

(0)
A well structured KS5 Lesson on Phenols. The lesson contains a starter activity, mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To recall and explain the electrophilic substitution reactions of phenol:  with bromine to form 2,4,6-tribromophenol (ii)  with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol (j)  To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons,including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Analysis (OCR)
TeachScienceBeyondTeachScienceBeyond

Analysis (OCR)

5 Resources
5 Full Lesson Bundle on Analysis from the OCR A Level Chemistry specification. Please review the learning objectives below. Lesson 1: Chromatography To interpret one-way TLC chromatograms in terms of Rf values To interpret gas chromatograms in terms of: (i) retention times (ii) the amounts and proportions of the components in a mixture To understand the creation and use of external calibration curves to confirm concentrations of components. Lesson 2: Qualitative Analysis of Organic Functional Groups To recall qualitative analysis of organic functional groups on a test-tube scale To design qualitative analysis tests to distinguish between two or more organic compounds Lesson 3: Carbon-13 NMR Spectroscopy To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about: The number of carbon environments in the molecule The different types of carbon environment present from chemical shift values Possible structures for the molecule Lesson 4: Proton NMR Spectroscopy (Part 1) To analyse proton NMR spectra of an organic molecule to make predictions about: The number of proton environments in the molecule The different types of proton environment present from chemical shift values Lesson 5: Proton NMR Spectroscopy (Part 2) (includes combined techniques) To analyse proton NMR spectra of an organic molecule to make predictions about: The different types of proton environment present from chemical shift values The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule Possible structures for the molecule Note: 2 Exam Questions on Combined Techniques are also included in lesson 5! Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Shapes of Molecules and Ions
TeachScienceBeyondTeachScienceBeyond

Shapes of Molecules and Ions

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the shapes of molecules and ions By the end of this lesson KS5 students should be able to: Determine the number of bonding pairs & lone pairs in a molecule or ion Recall the shapes and bond angles of molecules and ions with up to six electron pairs surrounding the central atom Explain the shapes of molecules and ions using the electron pair repulsion theory To construct diagrams to illustrate the 3D shapes of molecules and ions **Note: If molecular modeling kits are not available then step 3 from the discovery task can simply be deleted from slide 6. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Kinetics: Concentration-Time Graphs (part 2)
TeachScienceBeyondTeachScienceBeyond

Kinetics: Concentration-Time Graphs (part 2)

(1)
A structured Year 13 KS5 lesson ( lesson 2 of 2) on Concentration-Time Graphs. Lesson includes starter activity, worked examples and Afl quiz By the end of this lesson KS5 students should be able to: To deduce zero & first order reactants from concentration-time graphs To calculate the rate constant of a first order reactant using their half-life Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Acid-Base Titration Calculations (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Acid-Base Titration Calculations (AS Chemistry)

(0)
A complete A Level Chemistry KS5 lesson including starter activity, main work task and answers on acid-base titration calculations By the end of this lesson KS5 students should be able to: To apply mole calculations to complete structured titration calculations, based on experimental results of familiar acids and bases. To apply mole calculations to complete non-structured titration calculations, based on experimental results of non-familiar acids and bases All tasks have worked out answers which will allow students to self assess their work in the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Mass Spectrometry in Organic Chemistry
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Mass Spectrometry in Organic Chemistry

(1)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectrometry in Organic Chemistry. Suitable for OCR AS Chemistry. By the end of the lesson, students should be able to: Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass 2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Mass Spectroscopy
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Mass Spectroscopy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Mass Spectroscopy. Suitable for OCR AS Chemistry By the end of this lesson KS5 students should be able to: To determine the relative atomic masses and relative abundances of the isotope using mass spectroscopy To calculate the relative atomic mass of an element from the relative abundances of its isotope Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Moles & Volumes (Solutions & Gas Volumes)
TeachScienceBeyondTeachScienceBeyond

Moles & Volumes (Solutions & Gas Volumes)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on moles and volumes (solutions and gas volumes) By the end of the lesson students should be able to: To calculate the amount of substance in mol, involving solution volume and concentration To understand the terms dilute, concentrated and molar To explain and use the term molar gas volume To calculate the amount of substance in mol, involving gas volume Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Amino Acids And Their Reactions
TeachScienceBeyondTeachScienceBeyond

Amino Acids And Their Reactions

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amino Acids And Their Reactions By the end of this lesson KS5 students should be able to: To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Amides
TeachScienceBeyondTeachScienceBeyond

Amides

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amides By the end of this lesson KS5 students should be able to: To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
GCSE Physics: Internal Energy
TeachScienceBeyondTeachScienceBeyond

GCSE Physics: Internal Energy

(0)
A whole lesson including starter activity, AfL work tasks and main work task all with answers on Internal Energy By the end of this lesson KS4 students should be able to: Describe the particle model of matter Understand what is meant by the internal energy of a system Describe the effect of heating on the energy stored within a system The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson
Aromatic Compounds (OCR)
TeachScienceBeyondTeachScienceBeyond

Aromatic Compounds (OCR)

5 Resources
5 Full Lesson Bundle which covers the lessons on aromatic compounds from the OCR A Level Chemistry Specification. See below for the lesson objectives Lesson 1: Benzene and its Structure To describe the Kekulé model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the Kekulé model of benzene and the delocalised model of benzene To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Lesson 2: Naming Aromatic Compounds State the IUPAC name of substituted aromatic compounds Construct the structure of aromatic compounds based on their IUPAC names Analyse the correct numbering system for di and trisubstituted aromatic compounds Lesson 3: The Reactions of Benzene To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Lesson 4: Phenols To recall and explain the electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol (j) To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Lesson 5: Directing Groups in Aromatic Compounds To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
The Equilibrium Constant Kp
TeachScienceBeyondTeachScienceBeyond

The Equilibrium Constant Kp

(1)
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on The Equilibrium Constant Kp By the end of the lesson students should be able to: To use the terms mole fraction and partial pressure To construct expressions for Kp for homogeneous and heterogeneous equilibria To calculate Kp including determination of units To understand the affect of temperature, pressure, concentration and catalysts on Kp and controlling the position of equilibrium Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A2 Chemistry: AQA Synthetic Routes Revision
TeachScienceBeyondTeachScienceBeyond

A2 Chemistry: AQA Synthetic Routes Revision

(0)
A 16 page pdf summary of all the organic synthesis reactions from the AS and A level AQA Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* ethanol production reactions* electrophilic substitution reactions* nucleophilic addition reactions* nucleophilic addition-elimination reactions* carbon-carbon bond formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* reactions of acid anhydrides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Biodiesel formation reactions* Transesterification reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Core Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

Core Organic Chemistry (OCR)

20 Resources
20 well structured chemistry lessons covering topics in Module 4 of the OCR Specification: **Core Organic Chemistry ** *(Note: Lessons on Analytical techniques: IR and Mass spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Organic and Inorganic Compounds To describe what organic and inorganic compounds are 2 To compare the strength of bonds in organic and inorganic compounds To explain the molecular shape of carbon containing compounds Lesson 2: Naming organic compounds To know the IUPAC rules for naming alkanes and alkenes To know the IUPAC rules for naming aldehyde, ketones and carboxylic acids To construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae Lesson 3: Types of formulae To know what is meant by the terms empirical and molecular formula To compare the terms general, structural, displayed and skeletal formula To construct organic compounds using either of the 6 types of formulae Lesson 4: Isomers To describe what structural isomers and stereoisomers are To construct formulae of structural isomers of various compounds To construct formulae of E-Z and cis-trans stereoisomers of alkenes Lesson 5: Introduction To Reaction Mechanisms To understand that reaction mechanisms are diagrams that illustrate the movement of electrons using curly arrows To understand where curly arrows being and where they end To identify and illustrate homolytic and heterolytic bond fission in reaction mechanisms Lesson 6: Properties of Alkanes To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate To explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion To describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces Lesson 7: Combustion of Alkanes To understand why alkanes are good fuels To recall the equations (both word and symbol) for complete combustion of alkanes To recall the equations (both word and symbol) for incomplete complete combustion of alkanes Lesson 8: Free Radical Substitution of Alkanes To know what a free radical is To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Lesson 9: The Properties of Alkenes 1.To know the general formula of alkenes 2. To explain the shape and bond angle around each carbon atom of a C=C bond 3. To describe how π and σ bonds are formed in alkenes Lesson 10: Addition Reactions of Alkenes To know what an electrophile is To describe what an electrophilic addition reaction is To outline the mechanism for electrophilic addition Lesson 11: Addition Polymerisation To know the repeat unit of an addition polymer deduced from a polymer To identify the monomer that would produce a given section of an addition polymer To construct repeating units based on provided monomers Lesson 12: Dealing with Polymer Waste To understand the benefits for sustainability of processing waste polymers by: Combustion for energy production Use as an organic feedstock for the production of plastics and other organic chemicals Removal of toxic waste products such as HCl To understand the benefits to the environment of development of biodegradable and photodegradable polymers Lesson 13: Properties of Alcohols To identify and explain the intermolecular forces that are present in alcohol molecules To explain the water solubility of alcohols, their low volatility and their trend in boiling points To classify alcohols as primary, secondary or tertiary alcohols Lesson 14: Oxidation of Alcohols To know that alcohols can undergo combustion reactions in the presence of oxygen To know alcohols can be oxidised by an oxidising agent called acidified potassium dichromate To know the products and reaction conditions for the oxidation of primary alcohols to aldehydes and carboxylic acids To know the products and reaction conditions for the oxidation of secondary alcohols to ketones Lesson 15: Other Reactions of Alcohols To know the elimination of H2O from alcohols in the presence of an acid catalyst and heat to form alkenes To know the substitution of alcohols with halide ions in the presence of acid to form haloalkanes Lesson 16: Haloalkanes and their Reactions (part 1) To define and use the term nucleophile To outline the mechanism for nucleophilic substitution of haloalkanes Lesson 17: Haloalkanes and their Reactions (part 2) To explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds To describe how the rate of hydrolysis of haloalkanes can be determined by experiment using water, ethanol and silver nitrate solution Lesson 18: Haloalkanes and the environment To know how halogen radicals are produced from chlorofluorocarbons (CFCs) by the action of UV radiation To construct equations for the production of halogen radicals from CFCs To construct equations for the catalysed breakdown of ozone by Cl. and other radicals (NO.) Lesson 19: Practical skills for organic synthesis To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux To understand the techniques for preparation and purification of an organic liquid including: Lesson 20: Synthetic routes in organic synthesis To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of an organic molecule containing several functional groups To create two-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
The Acid Dissociation Constant (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

The Acid Dissociation Constant (A Level Chemistry)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the acid dissociation constant Ka By the end of this lesson KS5 students should be able to: To understand the acid dissociation constant, Ka, as the extent of acid dissociation To know the relationship between Ka and pKa To convert between Ka and pKa Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Neutralisation & Titration Curves
TeachScienceBeyondTeachScienceBeyond

Neutralisation & Titration Curves

(0)
A structured KS5 lesson including starter activity, AfL work tasks and plenary task all with answers on Neutralisation & Titration Curves By the end of this lesson KS5 students should be able to: To interpret titration curves of strong and weak acids and strong and weak bases To construct titration curve diagrams of strong and weak acids and strong and weak bases Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
pH of Weak Acids (OCR)
TeachScienceBeyondTeachScienceBeyond

pH of Weak Acids (OCR)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the pH of weak acids By the end of this lesson KS5 students should be able to: To recall the expression of pH for weak monobasic acids To calculate the pH of weak monobasic acids using approximations To analyse the limitations of using approximations to Ka related calculations for ‘stronger’ weak acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above