A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
All 3 lessons included in this bundle are detailed and engaging and have been planned at length to cover the content of topic 5.3 of the AQA A-level biology specification, which is titled energy and ecosystems. The lessons contain a variety of tasks which introduce the biological content and then provide the students with opportunities to assess their understanding. There are also prior knowledge checks to make links to content from earlier in topic 5 and in topics 1 - 4. All the answers to the checks are embedded in the PowerPoint.
If you would like to check the quality of these lessons, download the lesson titled “GPP, NPP & N” as this has been shared for free.
This detailed lesson describes each of the 4 stages of aerobic respiration and explains how this cellular reaction yields ATP and generates heat. The engaging PowerPoint and accompanying resource have been designed to cover points 5.1 (i) and (ii) of the Edexcel A-level Biology B specificaiton and acts as a clear introduction for the upcoming lessons where the finer details of glycolysis, the Link reaction and Krebs cycle and oxidative phosphorylation are described
The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen is not present. This stage involves 10 reactions and an opportunity is taken to explain how each of these reactions is catalysed by a different, specific intracellular enzyme. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the link reaction and the Krebs cycle to run and that these stages produce the waste product of carbon dioxide. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP and the the formation of water when oxygen acts as the final electron acceptor.
As Biology is the study of living organisms which are built out of cells, a clear understanding of the topic of cell structure is critical for a student’s success in A-level Biology. Intricate planning has gone into all 7 of the lessons included in this bundle and the variety of tasks will engage and motivate the students whilst the details of the following specification points in topic 1 of the CIE A-level Biology course are covered:
Topic 1.1: The microscope in cell studies
Use an eyepiece graticule and stage micrometer to measure cells
Use of the millimetre, micrometre and nanometre
Distinguish between resolution and magnification
The use of light and electron microscopes
Calculate the actual sizes of specimens
Topic 1.2: Cells as the basic units of living organisms
Recognise eukaryotic cell structures and outline their functions
State that ATP is produced in the mitochondria and the chloroplast and the role of this molecule in cells
The structure of a typical prokaryotic cell
The differences between eukaryotic and prokaryotic cells
The key features of viruses
If you would like to sample the quality of these lessons, download the magnification and resolution lesson, the eukaryotic cell structures lesson and the viruses lesson as these have been shared for free
This fully-resourced lesson describes the ultrastructure of a prokaryotic cell including the nucleoid, plasmid, 70S ribosomes and cell wall. The engaging PowerPoint and accompanying resources have been designed to cover specification point 2.1 (iii) of the Edexcel A-level Biology B specification but has been specifically designed to be taught after the lesson on the ultrastructure of eukaryotic cells, specification point 2.1 (v), so that comparisons can be drawn.
A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that prokaryotic cells do not contain centrioles
As the first topic to be taught at the start at the second year of the Edexcel International A-level Biology course, topic 5 is very important and the content includes the key reaction of photosynthesis. All 11 lessons included in this bundle are highly detailed and have been filled with a wide variety of tasks which will engage and motivate the students whilst covering the following specification points:
The overall reaction of photosynthesis
The phosphorylation of ADP and the hydrolysis of ATP
The light-dependent reactions of photosynthesis
The light-independent reactions of photosynthesis
The products of the Calvin cycle
The structure of the chloroplasts and the role of this organelle in photosynthesis
The absorption spectrum and action spectrum
Separating chloroplast pigments using chromatography and identifying them using retention factor values
Be able to calculate net primary productivity
Know the relationship between NPP, GPP and R
Understand the meaning of the terms ecosystem, community, population and habitat
The numbers and distribution of organisms in a habitat are controlled by biotic and abiotic factors
The concept of niche
The effect of temperature on the rate of enzyme activity and the calculation of the Q10
Isolation reduces gene flow and leads to allopatric and sympatric speciation
If you would like to sample the quality of the lessons in this bundle, then download the products of photosynthesis and succession lessons as these have been uploaded for free
It’s fair to say that cell structure and biological molecules are two of the most important topics in the OCR A-level Biology A course and all 19 lessons that are included in this bundle have been planned at length to cover the module 2.1.1 & 2.1.2 specification points in the detail required at this level.
The lesson PowerPoints and their accompanying resources contain a wide range of tasks as well as regular checks to allow students to assess their understanding of the current content as well as prior knowledge checks to emphasise the importance of making links to topics in other modules.
The following specification points in modules 2.1.1 (cell structure) and 2.1.2 (biological molecules) are covered by the lessons in this bundle:
2.1.1
The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms
The use of the eyepiece graticule and stage micrometer
The use of staining in light microscopy
The use and manipulation of the magnification formula
The difference between magnification and resolution
The ultrastructure of eukaryotic cells and the functions of the different cellular components
The interrelationship between the organelles involved in the production and secretion of proteins
The importance of the cytoskeleton
The similarities and differences between the ultrastructure of prokaryotic and eukaryotic cells
2.1.2
The properties and roles of water in living organisms
The concept of monomers and polymers and the importance of condensation and hydrolysis reactions
The chemical elements that make up biological molecules
The structure and properties of glucose and ribose
The synthesis and breakdown of a disaccharide and a polysaccharide by the formation and breakage of glycosidic bonds
The structure of starch, glycogen and cellulose molecules
The relationship between the structure, function and roles of triglycerides, phospholipids and cholesterol in living organisms
The general structure of an amino acid
The synthesis and breakdown of dipeptides and polypeptides
The levels of protein structure
The structure and function of globular proteins
The properties and functions of fibrous proteins
The key inorganic ions involved in biological processes
The chemical tests for proteins, reducing and non-reducing sugars, starch and lipids
If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as they have been uploaded for free:
The use of microscopy
The importance of the cytoskeleton
Properties and roles of water
Glucose & ribose
General structure of an amino acid
Dipeptides, polypeptides and protein structure
This lesson bundle has been formed from the 13 detailed lesson PowerPoints and their accompanying resources that have been uploaded to cover a lot of the content in modules 2.1.4, 2.1.5 and 2.1.6 of the OCR A-level Biology A specification.
Each lesson contains a wide range of tasks, which include exam-style questions (with mark schemes), guided discussion points, and quick quiz competitions, that will engage and motivate the students whilst covering the following specification points:
Module 2.1.4: Enzymes
The role of enzymes in catalysing reactions that affect metabolism at a cellular and whole organism level
The role of enzymes in catalysing both intracellular and extracellular reactions
The mechanism of enzyme action
The effect of pH on enzyme activity
The effect of temperature on enzyme activity
The calculation of the temperature coefficient
The effect of enzyme and substrate concentration on enzyme activity
The need for coenzymes, cofactors and prosthetic groups in some enzyme-controlled reactions
Module 2.1.5: Biological membranes
The fluid mosaic model of membrane structure and the roles of its components
Simple and facilitated diffusion as forms of passive transport
Active transport, endocytosis and exocytosis as processes requiring ATP as an immediate source of energy
The movement of water across membranes by osmosis and the effects that solutions of different water potential can have on plant and animal cells
Module 2.1.6: Cell division, cell diversity and cellular organisation
The cell cycle
How the cell cycle is regulated
The main stages of mitosis
The significance of mitosis in life cycles
The significance of meiosis in life cycles
The main stages of meiosis
How cells of multicellular organisms are specialised for particular functions
The organisation of cells into tissues, organs and organ systems
The production of erythrocytes and neutrophils from stem cells in bone marrow
If you would like to sample the quality of the lessons in this bundle, then download the following lessons as they have been uploaded for free:
The roles of enzymes and mechanism of action
Simple and facilitated diffusion
Cell specialisation and organisation
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated task worksheets that have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use the test to compare the goodness of fit between the observed phenotypic ratios and expected ratios.
The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
This is the final lesson of topic 7.1 (inheritance) and links are made throughout the lesson to earlier parts of this topic such as dihybrid inheritance as well as to earlier topics such as meiosis.
Each of the 12 lessons included in this bundle have been written to specifically cover the content as detailed in topic 8 of the AQA A-level Biology specification (The control of gene expression). The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of this potentially difficult topic!
Lessons which cover the following specification points are included in this bundle:
Gene mutations and their effect on the structure of proteins
Most of a cell’s DNA is not translated
Totipotent, pluripotent, multipotent and unipotent stem cells
Regulation of transcription by transcription factors
The role of oestrogen in initiating transcription
Epigenetic control of gene expression in eukaryotes
Inhibition of transcription by increased DNA methylation or decreased acetylation of histones
Translation of mRNA can be inhibited by RNA interference
The main characteristics of benign and malignant tumours
Determining the genome of simpler organisms to determine the proteome and its applications
The development of DNA sequencing methods
The production of DNA fragments through use of enzymes or a gene machine
The role of the PCR to amplify DNA fragments
The transfer of DNA into a host cell
The use of labelled DNA probes to screen patients for heritable conditions, drug responses and to identify health risks
VNTRs
The technique of genetic fingerprinting to analyse DNA fragments
If you would like to see the quality of the lessons, download the producing DNA fragments and DNA methylation and acetylation lessons as these have been uploaded for free
This engaging lesson describes the relationship between the structure, properties and functions of a phopholipid and cholesterol. The PowerPoint has been written as the second lesson in a series of two that cover specification points 2.1.2 (h), (i) & (j) of the OCR A-level Biology A course and there is a particular focus on their roles in membranes to link to module 2.1.5.
In the previous lesson, the students met triglycerides and a quick quiz round called FAMILY AFFAIR is used at the start of the lesson to challenge the students on their knowledge of the structure of this macromolecule to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in module 2.1.5 on the fluid mosaic model. Students are briefly introduced to facilitated diffusion and reminded of active transport so they can recognise that proteins will be found in the membrane to allow for movement of large or polar molecules. The remainder of the lesson focuses on cholesterol, beginning with the structure. The hydrophobic nature of this molecule is then considered and discussed so that they can understand its role in the regulation of membrane fluidity. That just leaves one final quiz round which identifies vitamin D, testosterone and oestrogen as three substances that are formed from cholesterol
This fully-resourced lesson describes the non-specific responses of the body to infection and includes details of phagocytosis, inflammation and interferon release. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover the content of point 6.7 of the Pearson Edexcel A-level Biology A specification but topics including antigen-presentation are also introduced to prepare students for upcoming lessons on the immune response (6.8 & 6.9).
At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The importance of cell signalling for an effective immune response is discussed and the rest of the lesson focuses on the release of two chemicals - interferons and histamine. During the interferon section, references are made to a previous lesson on HIV structure and action so students can understand how the release of these signalling proteins helps neighbouring cells to heighten their anti-viral defences. A step by step guide is used to describe the release of histamine in the inflammatory response and the final task challenges students to use this support to form a detailed answer regarding the steps in inflammation.
As cells are the building blocks of living organisms, and Biology is the study of life, it’s fairly obvious that a clear understanding of cell structure is going to be critical for the success of an A-level student on the OCR A-level Biology A course. The 6 lessons included in this bundle are highly detailed and have been intricately planned to contain the detail needed at this level and to make links to topics in the other modules of the specification.
The lesson PowerPoints and accompanying resources contain a wide range of tasks which will engage and motivate the students whilst covering the following specification points in module 2.1.1:
The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms
The use of the eyepiece graticule and stage micrometer
The use of staining in light microscopy
The use and manipulation of the magnification formula
The difference between resolution and magnification
The ultrastructure of eukaryotic cells and the functions of the different cellular components
The interrelationship between the organelles involved in the production and secretion of proteins
The importance of the cytoskeleton
The similarities and differences in the structure and ultrastructure of prokaryotic and eukaryotic cells
If you would like to sample the quality of the lessons included in this bundle, then download “The use of microscopy” and “cytoskeleton” lessons as these have been uploaded for free
This bundle contains 18 detailed and engaging lessons which cover the following specification points in module 3 (Exchange and transport) of the OCR A-level Biology A specification:
3.1.1: Exchange surfaces
The need for specialised exchange surfaces
The features of an efficient exchange surface
The structures and functions of the components of the mammalian gaseous exchange system
The mechanism of ventilation in mammals
The mechanisms of ventilation and gas exchange in bony fish and insects
3.1.2: Transport in animals
The double, closed circulatory system in mammals
The structure and functions of arteries, arterioles, capillaries, venules and veins
The formation of tissue fluid from plasma
The external and internal structure of the heart
The cardiac cycle
How heart action is initiated and coordinated
The use and interpretation of ECG traces
The role of haemoglobin in transporting oxygen and carbon dioxide
The oxygen dissociation curve for foetal and adult haemoglobin
3.1.3: Transport in plants
The structure and function of the vascular systems in the roots, stems and leaves
The transport of water into the plant, through the plant and to the air surrounding the leaves
The mechanism of translocation
As well as the detailed A-level Biology content of the PowerPoint slides, the resources contain a wide range of tasks including guided discussion points, exam-style questions and quiz competitions which will engage and motivate the students
This lesson describes the effect that treaties such as CITES have had on global diversity. The PowerPoint and accompanying worksheets have been primarily designed to cover point 10.4 (ii) of the Edexcel A-level Biology B specification but has been planned to constantly challenge them on their knowledge of topic 3.3 (biodiversity) as a local conservation agreement is also considered
Many hours of research have gone into the planning of this lesson to ensure that a range of interesting biological examples are included, with the aim of fully engaging the students in the material to increase its relevance. The students will learn that the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) was first agreed in 1973 and that 35000 species are currently found in appendix I, II or III. Time is taken to go through the meaning of each appendix and then the following animal and plant species are used to explain the finer details of the agreement:
Tree pangolin, eastern black rhino for CITES appendix I
Darwin’s orchid for CITES appendix II
Four-horned antelope for CITES appendix III
Exam-style questions are used to check on their understanding of the current topic as well as to challenge their knowledge of previously-covered topics such as the functions of keratin, when considering the structure of the rhino horn. Each of these questions has its own markscheme which is embedded in the PowerPoint and this allows the students to constantly assess their progress.
The final part of the lesson considers the Countryside Stewardship Scheme as a local conservation agreements and discusses the reasons behind some of the key points. Students are told that farmers, woodland owners, foresters and land managers can apply for funding for a range of options including hedgerow management, low input grassland, buffer strips, management plans and soil protection options. The importance of the hedgerows for multiple species is discussed, and again a real-life example is used with bats to increase the likelihood of retention. The last task challenges them to use their overall knowledge of biodiversity to explain why buffer strips consisting of multiple types of vegetation are used and to explain why these could help when a farmer is using continuous monoculture.
An engaging lesson presentation and associated worksheet that looks at the use of antibiotics to treat bacterial infections and the raises the issue of the potential over-use of these substances. The lesson begins by getting the students to recognise the difference between three key terms that begin with anti (antibiotics, antivirals, antiseptics). Students will be introduced to the idea that antibiotics are specific to a small range of bacteria and therefore the correct one has to be selected before being prescribed. Moving forwards, students will meet the idea of the zone of inhibition and will understand how the size of this zone can be used as an indicator to the effectiveness of the treatment. Students are shown how to calculate the size of the zone and then are tested on their ability to apply this mathemetical knowledge. Finally, time is taken to look at the links to the topic of natural selection to explain how some bacteria are resistant to certain antibiotics. There are regular progress checks throughout the lesson so that students can assess their understanding.
This lesson has been designed for GCSE students but could be used as an introduction with A-level Biology students who are about to begin the topic of immunity.
This fully-resourced lesson describes the key steps in the process of DNA replication, including the role of DNA polymerase. Both the detailed PowerPoint and accompanying resources have been designed to cover point 2.11 (i) of the Pearson Edexcel A-level Biology A specification and this lesson also explains why this replication is known as semi-conservative in order to prepare the students for the following lesson on Meselson and Stahl’s experiment.
The main focus of this lesson is the role of DNA polymerase in the formation of the growing nucleotide strands but the students will also learn that the hydrogen bonds between nucleotide bases are broken by DNA helicase and that DNA ligase joins the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
All 4 of the lessons that are included in this bundle are fully-resourced and contain a wide range of activities that will motivate and engage the students whilst covering the content as detailed in topic 4 of the CIE A-level Biology specification (Cell membranes and transport).
Exam-style questions which check on current and prior understanding, differentiated tasks, discussion points and quick quiz competitions cover the following specification points:
The fluid mosaic model of membrane structure
The roles of phospholipids, cholesterol, glycoproteins and proteins
The roles of channel and carrier proteins
Simple diffusion
Facilitated diffusion
Active transport, endocytosis and exocytosis
Osmosis and the effect of the movement of water on animal and plant cells
If you would like to sample the quality of these lessons, download the active transport lesson as this has been uploaded for free
This bundle contains 7 fully-resourced and detailed lessons that have been designed to cover the content of topic 14.1 of the CIE A-level Biology specification (for assessment in 2025-27) which concerns homeostasis in mammals. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and previous knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Many of the tasks are differentiated to allow differing abilities to access the work and be challenged.
Specification points 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 are covered by these lessons
If you want to see the quality of the lessons before purchasing then the lesson on osmoregulation is a free resource to download
A highly engaging lesson presentation (74 slides) and accompanying worksheets that uses exam questions (with explained answers), quick tasks and quiz competitions to allow students to assess their understanding of the topic of Biological molecules (Topic 3.1). Students will have fun whilst recognising those areas of the specification which need further attention.
A fun and engaging lesson presentation (33 slides) and associated worksheet that uses exam questions, with fully explained answers, quick tasks and competitions to allow students to assess their understanding of Module 3.1.2 (Transport in Animals). The students will enjoy the lesson whilst being able to recognise which areas of the specification need further attention. Competitions included in the lesson are “SPOT THE ERROR”, “Where’s Lenny” and “Crack the code”