A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This bundle of 6 lessons covers a lot of the content in Topic C8 (Acids, bases and salts) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include:
Describe neutrality and relative acidity or alkalinity in terms of pH
Describe the characteristic properties of acids including the reactions with metals, bases and carbonates
Describe and use the tests for cations, anions and gases
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
This bundle of 3 lessons covers the majority of the content in the sub-topic C2.3 (Properties of materials) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Recall that carbon can form four covalent bonds
Explain the properties of diamond, graphite, fullerenes and graphene in terms of their structures and bonding
Use data to predict states of substances under given substances
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 10 lessons covers all of the content in the sub-topic C2.1 (Purity and separating mixtures) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Explain what is meant by the purity of a substance and use melting point to distinguish pure from impure
Calculate the relative formula mass separately and in a balanced symbol equation
Deduce the empirical formula of a compound
Explain that many useful materials are formulations of mixtures
Describe and explain the processes of filtration, crystallisation, simple distillation and fractional distillation
Describe the processes of paper and thin-layer chromatography
Recall that chromatography involves a mobile and stationary phase
Interpret chromatograms
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a concise, fast-paced lesson that introduces students to addition polymers and guides them through drawing displayed formulae to represent both the monomers and polymers involved in these reactions. Students will learn the conditions needed for these reactions and that the polymers produced by addition reactions are the only products. The main part of the lesson involves a step by step guide to show students how to draw displayed formulae. Hints are given throughout the process so that students can remember the key ideas and are able to represent these substances accurately. A number of progress checks have been written into the lesson so that students can assess their understanding any misconceptions can be addressed.
This lesson has been written for GCSE students
This bundle of 9 lessons covers the majority of the content in Topic C4 (Organic chemistry) of the Edexcel iGCSE Chemistry specification. The sub-topics and specification points covered within these lessons include:
[a] Introduction
Know that a hydrocarbon is a compound of hydrogen and carbon atoms only
Know what is meant by the term homologous series and functional group
Understand how to name compounds containing up to six carbon atoms
Be able to write the structural and displayed formula of an organic molecule
[b] Crude oil
Know that crude oil is a mixture of hydrocarbons
Describe how the process of fractional distillation separates crude oil into fractions
Know the names and properties of the main fractions
Know the possible products of complete and incomplete combustion of hydrocarbons with oxygen in the air
Understand why carbon monoxide is poisonous
Describe how long chain alkanes are converted to alkenes and shorter chain alkanes by cracking
[c] Alkanes
Know the general formula for the alkanes and explain why they are classified as the saturated hydrocarbons
Understand how to draw the structural and displayed formula for the alkanes
[d] Alkenes
Know that alkenes contain the functional group C=C and know their general formula
Explain why the alkenes are described as the unsaturated hydrocarbons
Understand how to draw the structural and displayed formula for the alkenes
Describe how bromine water can be used to distinguish between an alkane and an alkene
[e] Alcohols
Know that the alcohols contain the functional group -OH
Understand how to draw structural and displayed formula for the first 4 alcohols
Know that ethanol can be manufactured by reacting ethene with steam and by the fermentation of glucose
[f] Carboxylic acids
Know the functional group of the carboxylic acids
Understand how to draw structural and displayed formula for the acids
Describe the reactions of the acids with metals and metal carbonates
Know that vinegar is an aqueous solution containing ethanoic acid
[h] Synthetic polymers
Know that an addition plymer is formed by joining many small molecules called monomers
Understand how to draw the repeat unit of an addition polymer
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the sub-topics found within Topic C6 (Groups in the Periodic table) of the Edexcel GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Describe the reactions of lithium, sodium and potassium with water
Describe the pattern of reactivity in the alkali metals and explain this pattern in terms of electronic configurations
Describe the reactions of the halogens to form metal halides
Explain the reactivity of the halogens in terms of electronic configurations
Explain why the noble gases are chemically inert
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This lesson describes the meaning of an isotope and explains how to calculate the relative atomic mass using the relative masses and abundance of its isotopes. The PowerPoint and accompanying resources have been designed to cover the detail of points 1.9, 1.11 & 1.12 of the Edexcel GCSE Chemistry & Combined Science specifications.
The early topic 1 lessons covered the meaning of the atomic and mass number and the calculation of the number of subatomic particles, and this lesson begins by challenging the recall of this key information. Moving forwards, a quick quiz competition is used to introduce the term “isotope” and then the students have to calculate the number of subatomic particles in K-39, K-40 and K-41 before using their answers to complete a definition about these types of substances. Time is taken to explain how isotopes are represented in standard annotation and the importance of the mass number is emphasised. A series of application questions are used to challenge them to apply their understanding and knowledge and mark schemes are embedded into the PowerPoint to allow the students to self-mark.
The remainder of the lesson explains how the existence of isotopes results in some elements having relative atomic masses that are not whole numbers and then explains how these masses can be calculated. Once an example is demonstrated, the students are again given the chance to apply their understanding to a series of questions, and this exam question worksheet has been differentiated two ways
This lesson describes the meaning of an isotope and explains how to calculate the relative atomic mass using the relative masses and abundance of its isotopes. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 lessons have been designed to cover the detail of points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry & Combined Science specifications.
The early topic 1 lessons covered the meaning of the atomic and mass number and the calculation of the number of subatomic particles, and this lesson begins by challenging the recall of this key information. Moving forwards, a quick quiz competition is used to introduce the term “isotope” and then the students have to calculate the number of subatomic particles in K-39, K-40 and K-41 before using their answers to complete a definition about these types of substances. Time is taken to explain how isotopes are represented in standard annotation and the importance of the mass number is emphasised. A series of application questions are used to challenge them to apply their understanding and knowledge and mark schemes are embedded into the PowerPoint to allow the students to self-mark.
The remainder of the lesson explains how the existence of isotopes results in some elements having relative atomic masses that are not whole numbers and then explains how these masses can be calculated. Once an example is demonstrated, the students are again given the chance to apply their understanding to a series of questions, and this exam question worksheet has been differentiated two ways
This lesson explains how to use the endings -ide and -ate when naming compounds. The lesson PowerPoint and accomapnying worksheet have been designed to cover point 1.25 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course
The lesson begins with some simple multiple choice questions to check that students can spot the chemical symbol and definition of an element, but more importantly pick out the formula for a compound. Time is taken to go through the explanation of why substances are elements or compounds and specific examples given. A quick understanding check, in the form of a competition called “To COM or NOT TO COM”,is used to check that students can identify elements or compounds from a name or given formula. The remainder of the lesson focuses on naming compounds. Students are challenged to spot a pattern when presented with the names of two compounds, which contain 2 elements only. For both compounds that contain 2 elements or 3 or more, the rules to naming are introduced before examples are shown so that students can visualise how to construct their answer. They are then given an opportunity to apply this to a number of questions in the set tasks. The last part of the lesson moves this forward by looking at how these same rules can be applied when the chemical formula of a compound is given and this is related to another topic as they are challenged to write a word equation containing a range of compounds when presented with the symbol equation. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding.
Although this is written for Edexcel GCSE students, it is perfectly suitable for use with younger students who are learning about elements, compounds and mixtures and the teacher wants to push them onwards
This lesson describes how to calculate the relative formula mass from simple chemical formulae and for those that include brackets. The PowerPoint and the accompanying worksheet have been designed to cover point 1.43 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course.
The lesson contains a wide range of tasks, understanding checks and quick quiz competitions to guide students through calculating the relative formula mass for substances with a range of chemical formulae. The relative formula mass is required in a lot of calculations, such as those that involve moles, so it is an important skill to get right. Worked examples are used throughout the lesson to visualise the metho for the students. Initially, students will learn how to calculate the mass from simple formulae before helpful hints are provided for harder formulae such as those that contain a bracket. Students are given the chance to apply their knowledge by proving that mass is conserved in a reaction and this prepares them for an upcoming lesson.
This lesson has been written for GCSE students but could be used with higher ability KS3 students in lessons that are looking to push knowledge forward
This lesson describes the reactants and products of the Haber Process and then explores and explains why the specific conditions are chosen for this reaction. The PowerPoint and accompanying worksheets have been designed to cover specification point 10.4.1 of the AQA GCSE Chemistry specification. The summary passage which is completed at the end of the lesson has been differentiated two ways.
The lesson begins by challenging the students to use a description of the reaction to complete the balanced symbol equation. A quiz competition involving both Chemistry and Maths skills is used to reveal the temperature and pressure which are chosen for this reaction. Students will learn that this only produces a yield of 30% and therefore are encouraged to question why these conditions are chosen. In doing so, they are made to wear two “hats”, so that they consider it from both a Science angle but also a business angle. Their knowledge of reversible reactions and the effect of changing either the temperature or the pressure on the position of the equilibrium are constantly challenged and then checked through a range of progress check questions. As a result of this lesson, students will understand that these conditions are a compromise and be able to explain why.
This lesson introduces the alkanes as a group of hydrocarbons and explains how to draw their displayed formula and work out the general formula. The PowerPoint is part of the second lesson in a series of 2 which have been designed to cover point 7.1.1 of the AQA GCSE Chemistry & Combined Science specifications.
The students were introduced to crude oil and hydrocarbons in the previous lesson so this one begins by introducing the fact that most of the hydrocarbons in crude oil are alkanes. The students are challenged to recall that covalent bonds will hold hydrogen and carbon together and they will learn that every carbon atom has four covalent bonds. This fact is used in the step by step guide as they are shown how to draw the displayed formula for methane. Moving forwards, a quick competition is used to introduce the next three members of the group in ethane, propane and butane, and the students have to apply their understanding by drawing the formula to find the molecular formula. The general formula for the alkanes is determined and then a series of exam questions will challenge them to apply this to work out numbers of carbon or hydrogen atoms or to write a formula.
This lesson explains how to calculate the number of protons, neutrons and electrons in atoms and ions when given the atomic and mass numbers. The PowerPoint and accompanying resources are part of the second lesson in a series of 3 lessons which have been designed to cover the content of specification points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry and Combined Science specifications.
The lesson begins by challenging the students to put the chemical symbols for astatine, oxygen, iodine and carbon together to form the word atomic. Time is taken to explain the meaning of the atomic number and to emphasise how the number of protons in the nucleus is unique to atoms of that element. The students will learn that as the number of electrons is always the same as the number of protons in an atom, the atomic number can be used to calculate the numbers of both of these particles. Moving forwards, the mass number is considered and having been given the number of neutrons in a lithium atom, the students are challenged to articulate how the mass number and atomic number were used in this calculation. A series of worked examples are done as a class before the students are given the opportunity to challenge their understanding
The remainder of the lesson focuses on ions and how the number of protons, neutrons and electrons are calculated in these substances. Initially, the students are challenged to use their knowledge of the charge of an atom to deduce that ions must have differing numbers of protons and electrons. The standard annotation for ions are introduced and explained and a series of exam questions are then used to check understanding. Mark schemes for each of these final questions is embedded into the PowerPoint and the worksheet has been differentiated two ways
This bundle of three lessons has been designed to cover the detail in points 1.1.4, 1.1.5 & 1.1.6 of the AQA GCSE Chemistry & Combined Science specifications which concern atomic structure. The lessons are fully resourced and are filled with a range of activities which will engage and motivate the students whilst challenging them on their current understanding as well as checking on their ability to make links to content covered earlier in topic 1.
If you would like to see the quality of these resources then download the size and mass of atoms lesson as this has been shared for free.
This lesson describes how the limiting reactant controls the mass of the product formed and explains how to deduce the stoichiometry. The PowerPoint and accompanying worksheet, which is differentiated, have been designed to cover points 1.52 & 1.53 of the Edexcel GCSE Chemistry specification and also covers those points in the Chemistry section of the Combined Science course. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work.
The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning.
This lesson describes the differing properties of metals and non-metals and also relates this to their position in the Periodic Table. The lesson PowerPoint has been designed to cover points 1.18, 1.40 & 1.42 of the Edexcel GCSE Chemistry specification and this also covers those same points on the Combined Science course.
The lesson contains a range of tasks including guided discussion points and quick quiz competitions which will engage and motivate the students whilst introducing key properties such as malleability and the ability to conduct electricity. Time is also taken to consider where the metallic and non-metallic elements are found in the Periodic Table and a series of progress checks will challenge the students to link together properties with position.
This lesson describes how the empirical formula of a compound can be deduced from the masses of the different parts. The PowerPoint and accompanying resources have been designed to cover points 1.44 & 1.45 of the Edexcel GCSE Chemistry specification and also covers those points in the Chemistry section of the Combined Science course.
This lesson uses a step-by-step guide to walk students through the method involved in calculating the empirical formula. Students are given a template to use as they are introduced to the questions and then encouraged to work without it as the lesson progresses. The students are shown how empirical formula questions can be made more difficult and hints are given so that students are able to tackle them and access all of the marks available.
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of the content in topics C1 - C4, that will assessed on PAPER 3. It has been specifically designed for students on the Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention:
The relative mass and charge of protons, electrons and neutrons
Using the Periodic table to calculate numbers of the sub-atomic particles
Writing elements and compounds in chemical symbol equations
Simple and giant covalent structures
Explaining the difference in conductivity of graphite and diamond
Drawing dot and cross diagrams for ionic compounds
The transfer of electrons during the formation of an ionic bond
Writing chemical formulae for ionic compounds
Conservation of mass and balancing symbol equations
Calculating the relative formula mass
Electrolysis of molten salts and aqueous solutions
Extraction of metals
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams, diamond and graphite and writing chemical formulae.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 3 exam.
This bundle of 6 revision lessons challenges the students on their knowledge of the content of topics B1 - B7, C1 - C10 and P1 - P7 of the AQA GCSE Combined Science specification which will be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics.
The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content.
If you would like to see the quality of these lessons, download the paper 2 and 5 revision lessons as these have been shared for free.
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics C1 - C5, that will assessed on PAPER 3. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many sub-topics as possible, but the following have been given particular attention:
The relative mass and charge of protons, electrons and neutrons
Using the Periodic table to calculate numbers of the sub-atomic particles
Writing elements and compounds in chemical symbol equations
Covalent structures
Drawing dot and cross diagrams for covalent and ionic compounds
The transfer of electrons during the formation of an ionic bond
Properties of metals and non-metals
States of matter
Conservation of mass and balancing symbol equations
Calculating the relative formula mass
Electrolysis of molten salts and aqueous solutions
Extraction of metals
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as drawing dot and cross diagrams and writing chemical formulae.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3/4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 3 exam.