A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This REVISION resource has been designed to motivate and engage students whilst they are challenged on their knowledge of the content in topics C1-C5 of the AQA GCSE Chemistry specification which can be assessed on PAPER 1. This is fully-resourced and contains a detailed PowerPoint (208 slides) and accompanying worksheets, some of which have been differentiated.
The resource was written with the aim of covering as many of the sub-topics in C1-C5 as possible, but the following ones have been given a particular focus:
The chemical properties of the Group 1, 7 and 0 elements
The structure of atoms and ions
The properties of ionic compounds
Drawing dot and cross diagrams to represent ionic compounds
Extracting metals using carbon
REDOX reactions
Electrolysis of molten salts and solutions
Neutralisation reactions
Writing balanced chemical symbol equations
Simple and giant covalent structures
Diamond and graphite
Calculating the relative formula mass
Moles and Avogadro’s constant
Calculating the mass in reactions
Molar volume (Gas calculations)
Concentration of solutions
The organisation of the Periodic Table
Due to the extensiveness of this resource, it is likely to be used over the course of a number of lessons with a particular class and this allows the teacher to focus in on any sub-topics which are identified as needing more time.
This lesson uses 17 multiple-choice questions to challenge students to apply their understanding to the calculation sections of the course. The PowerPoint and accompanying resources are designed to act as revision during the final weeks leading up to the AQA GCSE Combined chemistry exams and the following topics are covered:
Atoms and ions
Isotopes
Concentration of solutions
Mole calculations using Avogadro’s constant
Calculating relative formula mass
Mole calculations using mass and relative formula mass
Calculating masses in reactions
Calculating energy changes in reactions
Calculating the mean rate of reaction
All 17 questions have answers embedded into the PowerPoint along with explanations and are followed by additional tasks to further check understanding if it was initially limited.
A fully-resourced lesson which includes a lesson presentation (24 slides) and a worksheet which is differentiated so that students can judge their understanding of the topic of writing half equations for electrolysis and access the work accordingly. The lesson uses worked examples and helpful hints to show the students how to write half equations at both the cathode and anode. Time is taken to remind students about the rules at the electrodes when the electrolyte is in solution so that they can work out the products before writing the equations.
This lesson has been designed for GCSE students (14 - 16 years old in the UK) but could be used with older students.
An engaging lesson presentation (39 slides) with associated differentiated worksheets that looks at they key differences between pure and impure substances and briefly explores how a mixture like an alloy can still be very useful.
The lesson begins by challenging the students to recognise 4 diagrams of pure substances from a selection of 5. This will lead students to the definition of pure (in Science) which is likely to be different to what they have encountered in everyday language. The next task gets the students to draw a graph showing the melting and boiling points of pure water. This will enable them to compare the melting point against that of an impure substance and therefore recognise that this difference can be used as point to decide on purity. An example of gritting is used to explain how this change in melting point can be utilised and then the students are challenged to apply this new-found knowledge to the situation of adding salt to boiling water when making pasta. The remainder of the lesson focuses on some famous mixtures. Beginning with air, students will be able to visualise how this mixture is made of a number of gases, each with different boiling points which allows them to be separated by fractional distillation. Alloys are briefly explored so that students know why these mixtures are used for certain functions over pure metals and the summary passage for this task has been differentiated two ways so that all can access the work. Progress checks have been written into the lesson at regular intervals so that students can check their understanding and a range of quick quiz competitions are used to maintain engagement whilst introducing new terms in a fun manner.
If you want to look into alloys in greater detail, then this lesson could be combined with the one named “alloys” which is also uploaded.
This bundle of 8 lessons covers the majority of the content in Topic C6 (The rate and extent of chemical change) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Rates of reaction
Factors affecting rates of reaction
Measuring rates of reaction
Reversible reactions
Changing the position of equilibrium
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This REVISION resource has been written with the aim of motivating the students whilst they are challenged on their knowledge of the content in Chemistry TOPIC 2 (States of matter and mixtures) of the Edexcel GCSE Combined Science specification. The resource contains an engaging and detailed PowerPoint (65 slides) and accompanying worksheets, most of which are differentiated to allow a range of abilities to access the work.
The wide range of activities, which include exam questions and quiz competitions, have been designed to cover as much of topic 2 as possible but the following sub-topics have been given a particular focus:
Pure substances in Science
Using melting and boiling points to distinguish between pure and impure
Separating mixtures using simple and fractional distillation
Determining a state of matter using data
Physical changes
Crystallisation
The mobile and stationary phases of paper chromatography
Calculating the retention factor
The treatment of water to make potable water
This resource is suitable for use at the end of topic 2, in the lead up to mocks or in the preparation for the final GCSE exams.
An engaging lesson presentation (33 slides) which walks students through the main steps in the extraction of iron from its ore. The lesson begins by challenging the students to recall the reactivity series of metals and specifically the position of iron in relation to carbon so they recognise that it can be extracted by reduction with carbon. Key skills from other Chemistry topics are tested during the lesson such as writing chemical formulae and redox reactions. The rest of the lesson involves a step-by-step guide where students are given a passage and a symbol equation with something missing which they have to complete. This task ensures that students recognise the products, formulae and state symbols at each stage. A number of quiz competitions are used during the lesson to maintain engagement and progress checks have been written into the lesson at regular intervals so that students can assess their understanding.
This lesson has been written for GCSE students and fits in nicely with other resources that are uploaded (extracting metals and extracting aluminium).
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson.
This lesson has been designed for GCSE students.
This lesson revisits the topic of random and systematic errors and also challenges students on other scientific skills such as identifying variables. Students tend to find this topic confusing, so the PowerPoint and accompanying resources have been designed to support them to identify whether an error is random or systematic and then to understand what to do next.
The lesson guides the students through a series of real life examples and shows them how to spot each type of error. There is a considerable mathematical element to this lesson, including the calculation of means or missing values in a table.
The lesson concludes with a series of exam-style questions where the students have to apply their understanding of identifying errors, variables and calculating means.
This fully-resourced lesson with differentiated resources has been written to prepare students for the range of mathematical-based questions they may face on the two Edexcel GCSE Chemistry papers. The lesson has been designed to contain a wide range of activities which includes 8 quiz competition rounds spread across the duration of the lesson to maintain engagement whilst the students assess their understanding.
The mathematical skills covered in this lesson include:
Calculating the number of sub-atomic particles in atoms and ions
Writing chemical formulae for ionic compounds
Identifying isotopes
Calculating the relative atomic mass using isotope mass and abundance
Using Avogadro’s constant to calculate the number of particles
Calculating the relative formula mass
Calculating amount in moles using the mass and the relative formula mass
Balancing chemical symbol equations
Calculating reacting masses
Gas calculations using molar volume
Calculating concentration of solutions
Titration calculations
Deducing the empirical formula
Calculating energy changes in reactions
Most of the resources have been differentiated two ways to allow students of differing abilities to access the work whilst still being challenged. In addition, step by step guides are used to demonstrate how to carry out some of the more difficult calculations such as the harder mole calculations and calculating masses in reactions
This lesson could be used with higher ability students on the Edexcel GCSE Combined Science course by taking out the sections which are not applicable.
An engaging lesson presentation (64 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit C2 (Elements, compounds and mixtures) of the OCR Gateway A GCSE Chemistry specification.
The topics that are tested within the lesson include:
Relative formula mass
Empirical formula
Pure and impure substances
Separation methods
Electronic structures
Forming ions
Ionic compounds
Simple molecules
Giant covalent substances
Carbon
Nanoparticles
Students will be engaged through the numerous activities including quiz rounds like “SEPARATE the fact from the fiction” and “Higher or Lower” whilst crucially being able to recognise those areas which need further attention
An engaging and informative lesson presentation (43 slides) that shows students how to write accurate chemical formulae for ionic compounds.
In order to write accurate chemical formulae, students need to know the charges of the ions involved. For this reason, the lesson begins by reminding students how they can use the Periodic Table to work out the charge of the charged atoms. Students are shown how they can use these ion charges to write the formula and then are given the opportunity to apply this to a number of examples. Moving forwards, students are shown how some formulae need to contain brackets. The lesson finishes with a competition called “Ye Olde Chemical Formula Shop” where students get points if they are the first to work out the formula of a given substance.
This lesson has been written for GCSE students.
This bundle of 3 lessons covers the majority of the content in the sub-topic C3.4 (Electrolysis) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include:
Recall that metals are formed at the cathode and non-metals are formed at the anode
Predict the products of the electrolysis of ionic compounds in molten state
Describe competing reactions in the electrolysis of aqueous solutions
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 4 lessons covers the majority of the content in Topic C2f (Acids, alkalis and titrations) of the Edexcel iGCSE Chemistry specification. The topics and specification points covered within these lessons include:
Describe the use of indicators to distinguish between acidic and alkaline solutions
Understand how to use the pH scale
Know that alkalis can neutralise acids
Describe how to carry out an acid-alkali titration
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Each of the 9 revision lessons included in this bundle are fully-resourced and have been designed to engage and motivate the students whilst they assess their knowledge of the CIE IGCSE Chemistry specification. The PowerPoints and accompanying resources use a range of activities which include exam-style questions with fully explained answers, differentiated tasks and quiz competitions to challenge the students on the following topics:
Topic 2: Experimental techniques
Topic 3: Atoms, elements and compounds
Topic 4: Stoichiometry
Topic 5: Electricity and Chemistry
Topic 6: Chemical energetics
Topic 7: Chemical reactions
Topic 9: The Periodic Table
Topic 11: Air and water
Topic 14: Organic Chemistry
The lessons will keep students thoroughly engaged during revision periods whilst enabling them to identify the areas of the specification which require further attention.
If you would like to see the quality of the lessons, download the topic 4 and 9 lessons as these have been shared for free
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within TOPIC 9 (Chemistry of the atmosphere) of the AQA GCSE Chemistry specification (specification point C4.9).
The topics that are tested within the lesson include:
The proportion of different gases in the atmosphere
The Earth’s early atmosphere
Greenhouse gases
Atmospheric pollutants
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
An informative lesson presentation (37 slides) and accompanying worksheets that guides students through the different methods that can be used to rearrange formulae as they will be required to do in the Science exams. The lessons shows them how to use traditional Maths methods involving inverse operations and also equation triangles to come to the same result. These are constantly linked to actual examples and questions to show them how this has to be applied. There are regular progress checks, with explained answers, so that students can assess their understanding.
A short lesson which includes a lesson presentation (27 slides) and a hint worksheet and looks at redox reactions that involve oxygen and electrons. When focussing on oxygen, the lesson uses the example of extracting metals by reacting them with carbon to show how the metal is reduced and the carbon is oxidised. Key terminology such as reducing agents are also discussed. The important topic of electrolysis is used when teaching about the redox reactions that involve electrons and students are reminded about half equations.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK) but is suitable for other ages
A fully resourced lesson that includes a lesson presentation (31 slides) and a related newspaper story to allow the students to compare the structure and properties of two allotropes of carbon, diamond and graphite. Students are guided through the structures and then challenged to work out how this relates to their respective properties. Time is taken to focus on the comparison between the two in terms of their ability to conduct electricity. A step by step answer is used to explain why diamond cannot conduct electricity so that students can use this when forming their answer for graphite.
This lesson has been designed primarily for GCSE students (14 - 16 year olds) where questions comparing these two substances are common but it is suitable for use with younger students too.
A fully-resourced lesson which guides students through drawing, writing and recognising the electronic configurations of atoms and ions. The lesson includes an engaging lesson presentation (33 slides), an associated worksheet and a competition worksheet.
The lesson begins by introducing the students to the number of electrons that can be held on the first three electron shells. They are then shown how to draw an electronic configuration and write this in brackets form. Students are given the opportunity to apply this knowledge by drawing the configuration of first 20 elements of the Periodic Table. Moving forwards, students are guided to enable them to discover how the electron configuration is linked to the position of an atom in the Periodic Table. The remainder of the lesson focuses on ions and how the configuration of these substances can be recognised. Some time is taken to explain how ions are formed from atoms and the lesson finishes with a competition which challenges students to identify atoms or ions from their configurations to form a word. There are regular progress checks throughout the lesson to allow the students to check on their understanding and a range of quiz competitions to maintain engagement.
This lesson has been written for GCSE students but could be used with younger students, especially the initial part of the lesson on atoms and the link to the Periodic Table