Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1131k+Views

1934k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Pearson Edexcel IGCSE Physics Electricity REVISION (Topic 2)
GJHeducationGJHeducation

Pearson Edexcel IGCSE Physics Electricity REVISION (Topic 2)

(1)
This is an engaging REVISION lesson which is fully-resourced and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 2 (Electricity) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first teaching in 2017 and first assessment in June 2019. The specification points that are covered and challenged in this revision lesson include: Use the following units: ampere (A), coulomb ©, joule (J), ohm (Ω), second (s), volt (V) and watt (W) understand how the use of fuses protects the device or user in a range of domestic appliances Know and use the relationship between power, current and voltage Know the difference between mains electricity being alternating current (a.c.) and direct current (d.c.) being supplied by a cell or battery Understand how the current in a series circuit depends on the applied voltage and the number and nature of other components Know and use the relationship between voltage, current and resistance Know that current is the rate of flow of charge Know that electric current in solid metallic conductors is a flow of negatively charged electrons Know that the voltage across two components connected in parallel is the same Calculate the currents, voltages and resistances of two resistive components connected in a series circuit Explain how positive and negative electrostatic charges are produced on materials by the loss and gain of electrons Know that there are forces of attraction between unlike charges and forces of repulsion between like charges The students will thoroughly enjoy the range of activities, which include quiz competitions such as “COMPLETE ME” where they have to compete to be the 1st to recognise an electrical key term to complete a passage whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Edexcel GCSE Combined Science Paper 5 (Physics 1) REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Combined Science Paper 5 (Physics 1) REVISION LESSONS

5 Resources
This bundle of 5 REVISION lessons covers the content in the following topics that can be assessed on Paper 5 (Physics 1) of the Edexcel GCSE Combined Science course: Topic 1: Key concepts in Physics Topic 2: Motion and forces Topic 3: Conservation of energy Topic 4: Waves Topic 5: Light and the EM spectrum Topic 6: Radioactivity Each of the lessons have been designed to include a wide range of activities that will keep the students engaged whilst they assess their knowledge of each of these topics.
Electric current
GJHeducationGJHeducation

Electric current

(0)
An engaging lesson presentation (30 slides) that looks at electric current and ensures that students know the key details about this factor in preparation for their GCSE studies. The lesson begins by forming a definition for this electrical term and then as the lesson progresses, this definition is broken so that each element is understood. Students will be introduced to the difference between electron flow and conventional current. Time is taken to ensure that students understand that an ammeter must be set up in series. The remainder of the lesson will focus on the mathematical calculations which include current and important skills such as converting between units is covered.] As stated above, this lesson has been designed primarily for those students taking their GCSE exams (14 - 16 year olds in the UK) but is suitable for younger students too.
Stopping distances
GJHeducationGJHeducation

Stopping distances

(0)
A fully-resourced lesson that looks at the meaning of thinking, braking and stopping distances and focuses on the factors that would cause each of them to increase. The lesson includes an engaging lesson presentation (45 slides) and an associated worksheet for the calculations. The lesson begins by introducing the term stopping distance and then challenging students to recognise that both the distance travelled during the driver’s reaction time and under the braking force will contribute to this. Students are constantly challenged to think about the factors that would cause either the thinking or braking distance to increase and to be able to explain why scientifically. Moving forwards, the mathematical element that is associated with this topic is explored as students are shown how to calculate the braking distance at different speeds as well as convert between speeds in miles per hour and metres per second. There is also a set homework included as part of the lesson. There are regular progress checks written into the lesson so that students can assess their understanding. This lesson has been written for GCSE students but could be used with those at KS3.
Energy sources
GJHeducationGJHeducation

Energy sources

(0)
This lesson has been designed to explore the range of energy sources which are used on Earth and specifically looks at why an increase in the use of renewable sources is critical for the future. The student’s scientific understanding is challenged at each step of the lesson but there is also a mathematical element running throughout. The lesson begins by challenging the students to predict which energy sources contributed the greatest % when presented with a pie chart. Students cover this topic in other subjects like Geography, so the lesson aims to build on this and consolidate the essential understanding. A range of renewable sources are discussed and key terms such as carbon-neutral taken on further. This lesson has been designed for GCSE students but parts could be used with younger students who are looking at
ORBITS
GJHeducationGJHeducation

ORBITS

(0)
A concise, fast-paced lesson that looks at the orbits of both natural and artifical satellites. The lesson has been written to build on the student’s knowledge of space from KS3 and add key details such as the gravitational pull between the different celestial objects. Students will learn how the speed of the orbiting object and the gravitational pull ensure that the object remains in orbit and consider what would happen should the speed change. Students are briefly introduced to a number of orbits of artificial satellites as well as the uses. This lesson has been designed for GCSE students
Sound waves
GJHeducationGJHeducation

Sound waves

(0)
An engaging lesson presentation that looks at how the amplitude and frequency of a sound wave can change. The lesson uses a range of sounds from recordings and challenges the students to draw the sound waves that would have been produced. In order to understand this topic, it is essential that the key terminology is understood and can be used in the correct context. Therefore, the start of the lesson focuses on wavelength and frequency and then longitudinal and challenges the students to recognise that these could all be related to sound waves. Moving forwards, students will hear a recording and then read a music “critique” that uses the key terminology so that can link the sounds to the change in shape of the waves. The final part of the lesson involves them drawing how the different sound waves would change from the control one. This lesson has been designed for GCSE students.
Terminal velocity
GJHeducationGJHeducation

Terminal velocity

(0)
A fast-paced lesson where the main focus is the description of motion with reference to the forces involved. The lesson begins by introducing the term, terminal velocity, and then through consideration of examples in the English language, students will understand that this is the top velocity. The example of a skydiver is used and whilst the story of the dive is told, students are challenged to draw a sketch graph to show the different stages of this journey. An exemplary answer is used to visualise how the motion should be described. Related topics like free body diagrams and resultant forces are brought into the answer in an attempt to demonstrate how they are all interlinked. The next task asks the students to try to describe the remaining parts of the graph and they can assess against displayed mark schemes. The final part of the lesson looks at the two terminal velocities that they were during the skydive and explains that the increased surface area after the parachute was opened led to the second velocity being lower. The last task challenges the students to use this knowledge to answer a difficult exam question. It has been differentiated so those students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Conservation of energy and energy stores
GJHeducationGJHeducation

Conservation of energy and energy stores

(0)
A fully-resourced lesson that includes a detailed and engaging lesson presentation (33 slides) and question worksheets which are diifferentiated. Together these resources guide students through the tricky topic of the conservation of energy by transfers between energy stores which can often be poorly understood. This lesson has been written for GCSE students, but the law can be taught from an earlier age so this would be suitable for higher ability KS3 lessons. The lesson begins by introducing the key term, energy stores. The understanding of this term is critical for this topic and other lessons on energy transfers and therefore some time is taken to ensure that this key points are embedded into the lesson. Students will learn that stores can be calculated due to the fact that they have an equation associated with them and some of these need to be recalled (or applied) at GCSE. Therefore, the first part of the lesson involves two engaging competitions where students are challenged to recall part of an energy store equation or to recognise which energy store an equation is associated with. Students are given the information about the remaining energy stores, such as chemical and electrostatic. Moving forwards, the main part of the lesson explores the law of the conservation of energy and shows students how they need to be able to apply this law to calculation questions. Students are shown how to answer an example question involving the transfer of energy from a gravity store to a kinetic energy store. A lot of important discussion points come up in this calculation, such as resistive forces and the dissipation of energy, so these are given the attention they need. Students are then challenged to apply their knowledge to a calculation question on their own - this task has been differentiated two ways so that all students can access the learning. The final slide of the lesson looks at the different ways that energy can be transferred between stores but those are covered in detail in separate lessons.
Topic P2: Motion and forces (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic P2: Motion and forces (Edexcel GCSE Combined Science)

10 Resources
This bundle of 10 lessons covers the majority of the content in Topic P2 of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Scalar and vector quantities Velocity Calculating speed Distance-time graphs Recall and use the acceleration equation Use the equations of motion equation Velocity-time graphs Recall some everyday speeds Use the equation to calculate weight The relationship between weight and gravitational field strength Recall and use the equation for momentum Momentum in collisions The factors affecting stopping distances All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P6:  Radioactivity (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic P6: Radioactivity (Edexcel GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers a lot of the content in Topic P6 (Radioactivity) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: The atom Isotopes Background radiation Alpha, beta and gamma radiation Nuclear decay equations The unit of radioactivity Half-life The dangers of ionising radiation The differences between irradiation and contamination All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Edexcel IGCSE Physics TOPICS 5-8 REVISION
GJHeducationGJHeducation

Edexcel IGCSE Physics TOPICS 5-8 REVISION

4 Resources
This bundle of fully-resourced revision lessons will engage and motivate the students whilst they assess their understanding of the content of topics 5 - 8 of the Pearson Edexcel IGCSE Physics specification. The lessons cover the following topics: Topic 5: Solids, liquids and gases Topic 6: Magnetism and electromagnetism Topic 7: Radioactivity and particles Topic 8: Astrophysics The detailed PowerPoint and accompanying resources contain exam-style questions with clear explanations of answers, differentiated tasks, class discussions and quiz competitions. If you would like to see the quality of the lessons, download the topic 7 revision lesson which is shared for free
OCR GCSE Physics PAPER 1 REVISION LESSONS
GJHeducationGJHeducation

OCR GCSE Physics PAPER 1 REVISION LESSONS

4 Resources
This bundle of 4 fully-resourced lessons have been designed to engage and motivate the students whilst they assess their understanding of the content in topics 1 - 4 of the OCR GCSE Physics specification which will be tested in PAPER 1. The detailed PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quick quiz rounds to bring in a competitive edge. The topics covered are: Topic 1: Matter Topic 2: Forces Topic 3: Electricity Topic 4: Magnetism and magnetic fields Due to the high mathematical content of this specification, the PowerPoints contain step-by-step guides to carrying out calculations. If you want to sample the quality of the lessons, download the topic 3 revision lesson which has been shared for free
OCR GCSE Physics PAPER 2 REVISION LESSONS
GJHeducationGJHeducation

OCR GCSE Physics PAPER 2 REVISION LESSONS

3 Resources
This bundle of 3 fully-resourced lessons have been designed to engage and motivate the students whilst they assess their understanding of the content in topics 5, 6 and 8 of the OCR GCSE Physics specification which will be tested in PAPER 2. The detailed PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quick quiz rounds to bring in a competitive edge. The topics covered are: Topic 5: Waves in matter Topic 6: Radioactivity Topic 8: Global challenges Due to the high mathematical content of this specification, the PowerPoints contain step-by-step guides to carrying out calculations. If you want to sample the quality of the lessons, download the topic 8 revision lesson which has been shared for free
WJEC GCSE Physics Topics 2.7 - 2.9 REVISION
GJHeducationGJHeducation

WJEC GCSE Physics Topics 2.7 - 2.9 REVISION

(0)
This revision lesson is fully-resourced and the engaging PowerPoint and accompanying resources have been designed to challenge students on their understanding of the content detailed in topics 2.7, 2.8 and 2.9 of the WJEC GCSE Physics specification. It was decided that the close links between the types of radiation, half-life and nuclear energy lent themselves to a combined revision resource. The lesson was written to cover as much of the topics as possible but the following points have been given particular attention: The nucleon and proton number and the numbers of neutrons and protons in an atomic nucleus Recognising and representing isotopes Calculating the half-life when given information about the radioactive count The differing penetrating powers of the three types of radiation Background radiation Sources of background radiation and possible reasons for varying levels of radon gas Nuclear decay equations for alpha and beta decay Nuclear fission and nuclear fusion Representing a nuclear fission reaction in an equation The wide range of activities which include exam-style questions with fully-explained answers, differentiated tasks and quick quiz competitions will engage and motivate the students whilst they recognise the areas of these topics which will require their further attention It is estimated that it will take in excess of 2 hours of GCSE teaching time to complete this lesson
Edexcel GCSE Physics REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Physics REVISION LESSONS

11 Resources
This bundle of revision lessons have been designed to enable students to assess their knowledge and understanding of the content detailed in the Pearson Edexcel GCSE Physics specification and ultimately to recognise those areas which need extra attention before an end of topic test or mock or terminal exam. Each lesson is fully-resourced and the engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with clearly explained answers and quick quiz competitions. The following topics are covered by this bundle: Topic 1: Key concepts in Physics Topic 2: Motion and forces Topic 3: Conservation of energy Topic 4: Waves Topic 5: Light and the EM spectrum Topic 6: Radioactivity Topic 7: Astronomy Topic 8: Energy - forces doing work Topic 9: Forces and their effects Topic 10: Electricity and circuits Topic 12: Magnetism and the motor effect Topic 13: Electromagnetic induction Topic 14: Particle model Topic 15: Forces and matter If you want to see the quality of these lessons, download the topics 4 & 5, 7, 10 and 12 & 13 lessons as these have been shared for free.
Edexcel GCSE Physics Topic 14 REVISION (Particle model)
GJHeducationGJHeducation

Edexcel GCSE Physics Topic 14 REVISION (Particle model)

(0)
This fully-resourced revision lesson challenges the students on their knowledge of the content which is detailed in topic 14 (Particle model) of the Pearson Edexcel GCSE Physics specification. The wide range of activities, which include exam-style questions with clear explanations, will allow them to assess their understanding of the content and to recognise those areas which require further attention. The lesson has been designed to cover as much of the module as possible but the following specification points have been given particular attention: Recall and use the equation to calculate density Explain the differences in density between the different states of matter Describe that mass is conserved during physical changes Explain how heating a system will change the temperature or change a state Define the terms specific heat capacity and specific latent heat and describe the differences between them Use the equations involving specific heat capacity and specific latent heat Explain the qualitative relationship between Kelvin temperature and pressure of a gas Convert between the Kelvin and degrees Celsius scales Explain the effect of changing the volume on the pressure of a fixed mass of gas at a constant temperature Explain why doing work on a gas can increase the temperature Most of the resources are differentiated to allow students of differing abilities to access the work and be challenged and the PowerPoint guides the students through the range of mathematical skills which are tested in this topic
Radioactivity REVISION (Edexcel GCSE Physics Topic 6)
GJHeducationGJHeducation

Radioactivity REVISION (Edexcel GCSE Physics Topic 6)

(0)
This is a highly engaging, detailed and fully-resourced revision lesson which has been designed to test the students on their knowledge and understanding of topic 6 (Radioactivity) of the Pearson Edexcel GCSE Physics specification. The PowerPoint and accompanying resources contain a wide range of resources which include exam-style questions with fully-explained answers, differentiated tasks and quick quiz competitions. The students will be motivated by the range of tasks whilst crucially recognising those areas of the specification which require some extra time before the exams The following specification points are covered in this lesson: Describe the structure of atom and recall the typical size Recall the relative masses and charges of the subatomic particles and use the number of protons and electrons to explain why atoms are neutral Describe the structure of the nuclei of an isotope Explain what is meant by background radiation and recall sources Describe methods for measuring and detecting radioactivity Describe the process of beta minus and beta plus decay Write and balance nuclear decay equations Explain the effects on the proton and nucleon number as a result of decay Recall that the unit of radioactivity is Bq Use the concept of half-life to carry out calculations Describe the use of isotopes in PET scanners Describe the differences between nuclear fission and fusion Explain how the fission of U-235 produces two daughter nuclei, two or three neutrons and releases energy Describe the advantages and disadvantages of nuclear energy Explain why nuclear fusion cannot happen at low temperatures and pressures It is estimated that it will take in excess of 2 hours of GCSE teaching to cover the detail of this lesson and it can be used for effective revision at the end of the topic or in the lead up to mock or terminal exams.
Solids, liquids and gases REVISION (TOPIC 5 Edexcel International GCSE Physics)
GJHeducationGJHeducation

Solids, liquids and gases REVISION (TOPIC 5 Edexcel International GCSE Physics)

(0)
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 5 Solids, liquids and gases) of the Pearson Edexcel International GCSE Physics specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: Using the correct units Converting between the Kelvin and degrees Celsius scales Explain the qualitative relationship between pressure and Kelvin temperature Use the relationship between pressure and Kelvin temperature Know and use the equations for density and pressure Design an experiment to investigate density Know the meaning of the specific heat capacity Use the equation for change in thermal energy Quiz rounds such as “SAY WHAT YOU SEE” and “YOU DO THE MATH” are used to test the students on their knowledge of key terms as well as numerical facts
Motion and forces REVISION (Edexcel GCSE Physics topic 2)
GJHeducationGJHeducation

Motion and forces REVISION (Edexcel GCSE Physics topic 2)

(0)
This lesson has been written to act as a revision tool for students at the completion of topic 2 of the Pearson Edexcel GCSE Physics specification or in the lead up to mock or terminal exams. This motion and forces topic is extensive and the engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units. The following specification points have received a particular focus in this lesson: Factors affecting thinking and braking distance Calculating the distance travelled from the area under the velocity-time graph Recalling and using the equations to calculate acceleration, force, speed, weight and momentum Calculating uniform acceleration from a velocity-time graph Resultant force and constant velocity Forces and velocity as vector quantities Circular motion The difference between mass and weight The law of the conservation of momentum A number of quick quiz rounds, such as FILL THE VOID and WEIGHT A MINUTE, are used to maintain engagement and motivation and to challenge the students on their recall of important points. It is estimated that it will take in excess of 2 hours of GCSE teaching time to cover the detail included in this lesson