A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick differentiated tasks and quiz competitions to allow students to assess their knowledge of the topic of moles and related topics as covered in the GCSE Chemistry and GCSE Combined Science courses. An understanding of moles and their associated calculations is critical for the success of a student in these two courses.
The following topics are covered in this revision lesson:
Avogadro’s law and constant
Mole calculations involving Avogadro’s constant
Mole calculations involving the formula, moles = mass x molar mass
Mole calculations involving the constant and the formula
Moles in balanced symbol equations and identifying molar ratios of reactants or reactants to products
Calculating masses in reactions
Gas calculations (molar volume)
Concentration of solutions (in mol per decimetre cubed)
Students will be engaged through the range of activities which includes quiz competitions such as “Fill the VOID” where students have to complete some equations which have pieces missing and also “In the BALANCE” where students have to balance equations in order to work out the number of moles on each side of the reaction. This lesson can be used at any time during the year as a revision material, in the lead up to mocks or as a final revision lesson before the GCSE terminal exams.
This extensive revision lesson challenges students on their knowledge and understanding of the content of topics 5 - 8 of the AQA A-level specification. The PowerPoint and accompanying resources are detailed and engaging and contain a selection of tasks which challenge the following points:
Directional, stabilising and disruptive selection
Saltatory conduction and other factors affecting conductance speed
The structure of a motor neurone
Sensory receptors, depolarisation and initiation of an action potential
Hardy-Weinberg principle
Genetic terminology
Codominance and sex-linkage
Autosomal linkage
Chi-squared test
Phosphorylation
The stages of aerobic respiration
Explaining lower ATP yields in anaerobic respiration
Skeletal muscle contraction
Structure and function of slow and fast twitch muscle fibres
The control of heart rate
Electrophoresis and genetic fingerprinting
The secondary messenger model
The students are tested through a variety of tasks including exam questions, understanding checks, and quiz rounds to maintain engagement. Due to the mathematical content in all A-level exams, there is also a focus on these skills. The answers to all questions are embedded into the PowerPoint so students can use this resource outside of the classroom.
The delivery of the whole lesson will likely need at least 2 or 3 hours of contact time so this resource could be used with students in the final weeks building up to their paper 2 exam, or alternatively with students before their mocks on these topics.
An engaging lesson presentation (70 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Chemistry unit C1 (Atomic structure and the Periodic Table) of the AQA GCSE Combined Science specification (specification unit C5.1).
The topics that are tested within the lesson include:
Mixtures
Development of the model of the atom
The subatomic particles
Electronic structure
The periodic table
Metals and non-metals
Group 0
Group 1
Group 7
Students will be engaged through the numerous activities including quiz rounds like “UNLOCK the safe" whilst crucially being able to recognise those areas which need further attention
An engaging lesson presentation (42 slides) and associated worksheet that uses a combination of exam questions, understanding checks, quick tasks and a quiz competition to help the students to assess their understanding of the topics found within the Chemistry unit C5 (Energy changes) of the AQA GCSE Combined Science specification (specification point C5.5). The lesson includes useful hints and tips to encourage success in assessments. For example, students are shown how to use the energy change in a chemical reaction to work out if it is an endothermic or exothermic reaction.
The topics that are tested within the lesson include:
Endothermic and exothermic reactions
Reaction profiles
Calculating energy changes in reactions
Students will be engaged through the numerous activities including a summary round called “E NUMBERS” which requires them to use all of their knowledge to work out the type of reactions that are shown.
This bundle of 5 revision lessons covers the specification content which can be assessed in Paper 2 of the Edexcel GCSE Biology qualification.
The topics covered within this bundle are:
Topic 1: Key concepts in Biology
Topic 6: Plant structures and functions
Topic 7: Animal coordination, control and homeostasis
Topic 8: Exchange and transport in animals
Topic 9: Ecosystems and material cycles
All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they address any areas which need further attention.
This fully-resourced revision lesson consists of an engaging PowerPoint and differentiated resources which together challenge the students on their knowledge of the Key concepts in Physics, which are detailed in topic 1 of the Pearson Edexcel GCSE Physics specification . The content in this topic is particularly important because it will be assessed in both paper 1 and paper 2 of the terminal exams.
The lesson has been filled with a wide range of activities which test the following specification points:
Recall and use the SI units for physical quantities
Recall and use multiples and sub-multiples of units
Be able to convert between different units
Use significant figures and standard form#
To fall in line with the heavy mathematical content of this specification, the main task of the lesson challenges the students to carry out a range of calculations where they have to convert between units and leave their answers in a specific form.
This lesson has been written to act as a revision tool for students at the completion of topic 2.1 of the WJEC GCSE Physics specification or in the lead up to mock or terminal exams. The engaging PowerPoint and accompanying resources have been designed to include a wide range of activities to allow the students to assess their understanding and to recognise any areas which need extra attention. This specification is heavy in mathematical content and so a lot of opportunities are presented for a range of skills to be tested and the PowerPoint guides students through the application of these requirements such as rearranging the formula and converting between units.
The following specification points have received a particular focus in this lesson:
Motion using speed, velocity and acceleration
Speed-time graphs
Application of the equations to calculate speed and acceleration
Using velocity-time graphs to calculate uniform acceleration and distance travelled
Knowledge of the terms reaction time, thinking distance, braking distance and stopping distance
The factors which affect these distances
A number of quick quiz rounds, such as THE WHOLE DISTANCE, are used to maintain engagement and motivation and to challenge the students on their recall of important points.
All of the lessons in this bundle are fully-resourced and have been designed to contain a wide range of activities that will challenge the students on their knowledge and understanding of the content of UNIT 2 of the WJEC GCSE Physics specification.
The engaging PowerPoints and accompanying resources cover the following topics:
Topic 2.1: Distance, speed and acceleration
Topic 2.3: Work and energy
Topic 2.4: Further motion concepts
Topic 2.7: Types of radiation
Topic 2.8: Half-life
Topic 2.9: Nuclear decay and nuclear energy
To fall in line with the heavy mathematical content of this course, the lessons challenge a range of skills including rearranging formulae, converting units, using standard form and significant figures and percentage change
If you would like to see the quality of the lessons, download the topic 2.3 lesson which has been shared for free
This lesson uses 17 multiple-choice questions to challenge students to apply their understanding to the calculation sections of the course. The PowerPoint and accompanying resources are designed to act as revision during the final weeks leading up to the AQA GCSE Combined chemistry exams and the following topics are covered:
Atoms and ions
Isotopes
Concentration of solutions
Mole calculations using Avogadro’s constant
Calculating relative formula mass
Mole calculations using mass and relative formula mass
Calculating masses in reactions
Calculating energy changes in reactions
Calculating the mean rate of reaction
All 17 questions have answers embedded into the PowerPoint along with explanations and are followed by additional tasks to further check understanding if it was initially limited.
This is a concise REVISION lesson that contains an engaging powerpoint (34 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P7 (Magnetism and electromagnetism) of the AQA Trilogy 9-1 GCSE Combined Science specification. Generally, this is a topic which isn’t particularly well understood by students but is regularly assessed through questions in the GCSE exams and so time has been taken to design the lesson so that the key points are covered and common misconceptions addressed.
The following sub-topics in the specification are covered in this lesson:
Poles of a magnet
Magnetic fields
Electromagnetism
Fleming’s left hand rule
Electric motors
This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
This is a concise REVISION lesson that contains an engaging powerpoint (43 slides) and associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P8 (Space Physics) of the AQA 9-1 GCSE Physics specification.
The following sub-topics in the specification are covered in this lesson:
Our Solar System
The life cycle of a star
Natural satellites
Red-shift
This lesson can be used throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams
An informative lesson presentation (37 slides) and accompanying worksheets that guides students through the different methods that can be used to rearrange formulae as they will be required to do in the Science exams. The lessons shows them how to use traditional Maths methods involving inverse operations and also equation triangles to come to the same result. These are constantly linked to actual examples and questions to show them how this has to be applied. There are regular progress checks, with explained answers, so that students can assess their understanding.
This clear and detailed lesson describes the process of oxidative phosphorylation, including the roles of the electron carriers, oxygen and the mitochondrial cristae and explains the role of chemiosmosis. The PowerPoint has been designed to cover points 5.2.2 (g) and (h) of the OCR A-level Biology A specification and includes details of the electron transport chain, proton gradients and ATP synthase.
The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 detailed steps and at each point, key facts are discussed and explored in further detail to enable a deep understanding to be developed. Students will see how the proton gradient across the inner membrane is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP by oxidative phosphorylation. Understanding checks are included throughout the lesson to enable the students to assess their progress and prior knowledge checks allow them to recognise the clear links to other topics and modules.
This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration
This fully-resourced lesson looks at the type of circulatory system found in a mammal (double, closed) and considers how the pulmonary circulation differs from the systemic circulation. The engaging PowerPoint and accompanying resources have been designed to cover point 3.1.2 (b) of the OCR A-level Biology A specification
The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary.
This lesson has been written to tie in with the other uploaded lessons from topic 3.1.2 (transport in animals)
A highly engaging lesson that looks at the structures that are found in the 1st line of defence and explores the methods of action use by phagocytes and lymphocytes. This lesson has been designed for GCSE students but could be used as an initial recap with A-level students before they go on to learn this topic in greater detail
The lesson begins by introducing the meaning of the 1st line of defence. A quick competition is used to challenge the students to recognise the names of some of these structures when their names have some letters missing. Time is taken to discuss the action of the cilia and skin and then students are challenged to make links to the related topics of enzymes and pH as they complete a passage about the role of hydrochloric acid in the stomach. Moving forwards, students will learn that there are two types of white blood cells, phagocytes and lymphocytes, and the details of their actions is explored. Key points such as the specificity of antibodies and the involvement of enzymes are discussed in detail so that this topic can be understood to the depth needed at this level. In addition to a number of games to maintain engagement, progress checks are written into this at regular intervals to allow the students to assess their understanding.
This bundle of 8 lessons covers the majority of the content in Topic C6 (The rate and extent of chemical change) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Rates of reaction
Factors affecting rates of reaction
Measuring rates of reaction
Reversible reactions
Changing the position of equilibrium
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a fully-resourced lesson that looks at the meaning of a limiting reactant in a chemical reaction and guides students through how to apply this to a number of calculations. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work.
The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning.
This lesson has been written for GCSE students.
This bundle of 10 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Biology specification. The topics covered within these lessons include:
Health
The difference between communicable and non-communicable diseases
Pathogens
Common infections
The spread of diseases and the prevention
The spread of STIs
Plant defences
Identification of plant diseases
The physical and chemical defences of the human body
The use of antibiotics
Developing new medicines
Monoclonal antibodies
Non-communicable diseases
Treating cardiovascular disease
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a fully-resourced lesson that looks at the functional and structural differences between the transport tissues in a plant, the xylem and phloem. The lesson includes an engaging lesson presentation (41 slides), which includes numerous student-led tasks, progress checks and quick competitions and two question worksheets, one of which is a differentiated version to enable those students who are finding this topic difficult to still be able to access the learning.
The lesson begins with the introduction of the two tissues as well as a brief introduction to the substances which they each carry. The next part of the lesson focuses on the xylem cells and the resulting xylem vessel, and key terms such as lignin are brought into the lesson so that students can understand how these cells are waterproofed, which causes them to decay and form hollow tubes. Having met a lot of information, students are challenged to act like an examiner to form a table based question to compare the xylem against the phloem where they have to come up with features which could be compared against. This table will form the backbone of the lesson and students will use it later in the lesson when they have to write summary passages about each of the tissues. Moving forwards, a quick competition is used to enable the students to meet the names of the cells that form the phloem tissue, the sieve tube elements and the companion cells. Students will see how they are involved in the functioning of the phloem and questions are posed which relate to other topics such as the involvement of mitochondria wherever active transport occurs. Progress checks like this are found at regular intervals throughout the lesson so that students can constantly assess their understanding.
This lesson has been designed for GCSE students. If you are looking to teach about these tissues but to a higher standard, you could use my uploaded alternative called Xylem and Phloem (A-level)
This fully-resourced lesson looks at the effects of nervous mechanisms on the heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the part of point 5.1.5 (k) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the control of the heart rate by the cardiovascular centre in the medulla oblongata
This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work