Aimed towards KS3 (Yrs 11-14), a fun animated lesson explaining the Seasons. Slide by slide animations shows clearly why the Earth experiences Summer and Winter.
By the end of the lesson learners should be able to:
Identify what causes summer and winter.
Describe how the Sun radiates light.
Explain the link between the tilting of the Earth and the seasons.
A collection of lessons to teach the unit 1, biological molecules section of a-level biology AQA specification.
Each lesson includes past paper question practice.
A comprehensive lesson which teaches students about the induced fit model for enzymes and how temperature, pH, substrate concentration and enzyme concentration affect the activity. This lesson was designed to fit needs of the AQA a-level biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: To evaluate how temperature, pH and inhibitors affect the activity of the induced fit model of enzymes.
By the end of the lesson learners should be able to:
Success criteria:
SC1: To describe the induced fit model for enzymes.
SC2: To explain why temperature and pH affect enzyme action.
SC3: To compare the effect of competitive and non-competitive inhibitors on enzyme action.
Powerpoint contains 15 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about the properties of water which make it essential for life. This lesson was designed to fit needs of the AQA a-level biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: Explore the properties of water and the role of inorganic ions in biology.
By the end of the lesson learners should be able to:
Success Criteria:
Explain water’s role as a solvent.
Describe hydrogen bonding in water.
Explain the functions of inorganic ions.
Powerpoint contains 26 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about the role of ATP in the body. This lesson was designed to fit needs of the AQA a-level biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: To investigate the mechanism of ATP as a mode of energy delivery.
By the end of the lesson learners should be able to:
Success criteria:
SC1: I can describe the structure of ATP.
SC2: I can explain the use of ATP as an energy source.
SC3: I can justify the need for ATP in the body.
Powerpoint contains 16 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about DNA replication, the enzymes responsible and how the semi-conservative hypothesis supports this. This lesson was designed to fit needs of the AQA a-level biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: Evaluate the roles of enzymes in DNA replication
By the end of the lesson learners should be able to:
Success criteria:
I can identify the enzymes and proteins present during DNA replication.
I can describe the process of DNA replication.
I can explain what is meant by the semi conservative hypothesis.
Powerpoint contains 10 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about the structure of a nucleotide and how these form DNA and RNA. This lesson was designed to fit needs of the AQA a-level biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: To construct models of DNA and RNA with reference to the nucleotide structure and 5’ to 3’ prime anti parallel strand.
By the end of the lesson learners should be able to:
Success criteria:
I can identify the components of a nucleotide.
I can describe the structure of DNA and RNA.
I can compare DNA and RNA.
Powerpoint contains 14 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about the structure of amino acids and how these form proteins from primary to quaternary structure… This lesson was designed to fit needs of the AQA a-level biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: To evaluate the use of side groups in forming protein structure.
By the end of the lesson learners should be able to:
Success criteria:
I can identify where proteins are found and how they are used in the body.
I can describe the different structures of protein
I can explain why a lack of proteins in the body can lead to disorders.
Powerpoint contains 20 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students biological molecules - lipids. This lesson was designed to fit needs of the AQA a-level biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: To evaluate the uses of triglycerides and phospholipids in the body
By the end of the lesson learners should be able to:
Success criteria:
I can identify the components of lipids.
I can create a model to show the structure of triglycerides…
I can justify how the structure of phospholipids allows for it to complete its function.
Powerpoint contains 12 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about biological molecules - carbohydrates. This lesson was designed to fit needs of the AQA a-level Biology course
Tasks are differentiated to suit the needs of each learner.
Learning objective: To understand the structure and function of Carbohydrates
By the end of the lesson learners should be able to:
Success criteria:
I can identify where carbohyrates are found and their structure.
I can describe how some carbohydrates are different to each other.
I can Explain why carbohydrates are needed by the body.
Powerpoint contains 19 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A collection of resources including lessons and past paper questions to suit the needs of unit 5-electricity for the AQA a level physics specification.
A comprehensive lesson which teaches students about errors, uncertainties and how these can be represented as error bars. This lesson was designed to fit needs of the AQA a-level physics course
Tasks are differentiated to suit the needs of each learner.
Learning objective: Understand and apply the concepts of measurement uncertainties.
By the end of the lesson learners should be able to:
Success criteria:
1: Identify random and systematic errors.
2: Calculate different types of uncertainties.
3: Represent uncertainties on graphs.
Powerpoint contains 29 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about power and how the equations for power can be derived using other equations furthermore it also applies this to Kirchhoff’s law of conservation of current. This lesson was designed to fit the needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To calculate power dissipation by using various equations.
By the end of the lesson learners should be able to:
Success criteria:
SC1: I can describe how to calculate power without using the standard P=IV calculation.
SC2: I can justify what is meant by power.
SC3: I can Link Kirchhoff’s conservation of charge to power dissipation in branches.
Powerpoint contains 7 slides.
Contains a series of questions that are supposed to target the entire electricity unit with included success criteria to ensure students give the necessary detail.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about factors that influence resistance within a wire in terms of area and length as well as superconductivity. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To justify the components of the resistivity equation and apply it.
By the end of the lesson learners should be able to:
Success criteria:
I can describe resistivity.
I can derive the units of resistivity by using the equation.
I can explain why superconductivity arises.
Powerpoint contains 8 slides and a pack of past paper questions
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about internal resistance and how this can be measured by measuring the gradient from a current-voltage graph. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To evaluate the effect of internal resistance in a circuit.
By the end of the lesson learners should be able to:
Success criteria:
I can describe what is meant by internal resistance
I can calculate internal resistance
I can obtain results for internal resistance from voltage and current readings.
Powerpoint contains 9 slides and past paper pack of questions.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about resistance and how this impacts voltage distribution in a potential divider circuit. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: Explain why a potential divider is used in appliances.
By the end of the lesson learners should be able to:
Success criteria:
I describe how to calculate the total resistance in a variety of circuits.
I can explain why a potential divider is used.
I can calculate the voltage output using the potential divider equation.
Powerpoint contains 24 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about Ohm’s law and how IV graphs are sketched for fixed resistors, diodes, thermistors, LDRs and filament bulbs. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To investigate the relationship between current and voltage in different circuit components.
By the end of the lesson learners should be able to:
Success criteria:
I can describe the IV graph trends for filament bulbs, diodes, fixed resistors, thermistors and LDRs
I can apply Ohm’s law to identify and then justify why IV graphs might be different.
I can apply my knowledge to answer past paper questions.
Powerpoint contains 30 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
A comprehensive lesson which teaches students about factors that influence electrical current. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity.
Tasks are differentiated to suit the needs of each learner.
Learning objective: To explain the fundamental concepts of electrical current, potential difference, electromotive force, including their definitions, units of measurement, and relationships to each other.
By the end of the lesson learners should be able to:
Success criteria:
SC1: Define and distinguish between current, potential difference electromotive force
SC2: Explain the relationships between current, potential difference and emf.
SC3: Derive the P = IV equation from two different equations.
Powerpoint contains 44 slides.
Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Tired of copying and pasting the same information for each piece of BTEC documentation?
The BTEC documentation generator helps reduce this task to a 2 minute job.
Import your BTEC assessment plan as per the normal BTEC layout and populate the fields as directed.
Obtain electronic signatures from each person mentioned in the plan (make sure to get their express permission before doing this).
That’s it, you can then open the master copy for either assessment record sheets, internal verification documents or resubmissions and 90% of the work has been done for you, all you have to do is the part that matters, the grading.
The document given has a science plan attached for reference, replace this with your chosen plan and the mail merge will do the rest of the work. This will work for any BTEC course.
Trailer video to show the capabilities here:
https://drive.google.com/file/d/1p1HyX8zodQBkBYE0RGttmXu_HAjzqa-h/view?usp=sharing
This software has been tested on 3 separate computers: a macbook, a microsoft surface and a laptop and each worked well. Please follow the instructions in the guide video if any help is needed.
The full guide is attached here:
https://drive.google.com/drive/folders/1IheyiPwLtN18TPTRDwu0uvjB19qbaoAm?usp=sharing
Included is a html file which holds the code for a sound meter, functionality can be seen in the video linked here: https://drive.google.com/file/d/1MLkyPn4nN5YfDTMdSgeRcWarPW5WGzxE/view?usp=sharing
Are you still using a timer or stopwatch to help with behaviour management? Why not automate the entire process instead?
Functions:
Measures the loudness of audio from your device and registers the loudness according to: silent, quiet, talking and shouting.
The meter will continue measuring even if the programme is minimised.
A quietness meter can be toggled on/off to display score of the quietness visually. Scales of the quietness bar can be customised to suit classes.
The values of duration at each loudness level can be reset if needed and recording of audio can be paused.
Sensitivity of the meter can be changed as needed, reference values for each category is displayed.
Seating arrangement below can be quickly setup by dragging and dropping the shapes above into the grid.
Fixing the tables in the grid allows for pupils (represented by circles in each table) to be clicked and cycle through colours: green, amber and red.
Colours can be used to highlight where key individuals are present in the class.
Tables and colours can be reset as needed.
The audio is not stored, only the loudness is measured and reported into the table for the duration.
The programme is not able to store any audio files for later use.