A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equations to determine the frequency of alleles, genotypes and phenotypes in a population. Both the detailed PowerPoint and differentiated practice questions on a worksheet have been designed to cover point 17.2 (d) of the CIE International A-level Biology specification which states that students should be able to demonstrate and apply their knowledge and understanding of the use of the principle to calculate frequencies in populations.
The lesson begins by looking at the two equations and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged.
This detailed lesson introduces the 3 main principles of the cell theory and describes how cells are organised into tissues, organs and organ systems. The engaging PowerPoint and accompanying resources have been designed to cover points 2.1 (i) & (ii) of the Edexcel A-level Biology B specification.
The cell theory is introduced at the start of the lesson and the 1st principle is immediately discussed to ensure that students are aware that all living organisms are made of cells. This principle is discussed with relation to viruses to enable students to understand that the lack of cell structure in a virus is one of the reasons that they are not considered to be living. The second principle states that the cell is the basic unit of structure and organisation and this leads into the main part of the lesson where specialised cells and their groupings into tissues are considered. Students are challenged to compare an amoeba against a human to get them to focus on the difference in the SA/V ratio. This acts as an introduction into the process of differentiation and a recognition of its importance for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems. The third principle states that cells arise from pre-existing cells and this will be demonstrated later in topic 2 with mitosis and meiosis.
This lesson outlines how penicillin acts on bacteria and why antibiotics do not affect viruses. The PowerPoint and accompanying resources have been designed to cover point 10.2 (a) of the CIE A-level Biology specification and also introduces the concept of bactericidal and bacteriostatic antibiotics, as illustrated by penicillin and tetracycline.
The lesson begins with an engaging task, where the students have to identify the surnames of famous scientists from their descriptions to reveal the surname Fleming. This introduces Sir Alexander Fleming as the microbiologist who discovered penicillin in 1928. Time is taken to describe penicillin as a group of antibiotics that contain a beta-lactam ring in their molecular structure. Using this information and their knowledge of bacterial cell structure from topic 1, the students have to complete a passage describing how penicillin inhibits the formation of cross links in cell wall synthesis. A series of exam-style questions are then used to make links to the upcoming topic of antibiotic resistance.
The next part of the lesson focuses on the differences between bactericidal and bacteriostatic antibiotics and the students will learn that penicillin is bactericidal as the weakening of the cell wall leads to lysis and death. Tetracycline is used as the example of a bacteriostatic antibiotic and students will discover that it is the prevention of the binding of tRNA that inhibits protein synthesis and that this reduction and prevention of growth and reproduction is synonymous with these antimicrobial agents. Students are challenged on their knowledge of translation and will also be given time for a class discussion to understand that these antibiotics work in tandem the body’s immune system to overcome the pathogen
The final part of the lesson explains why antibiotics are ineffective against viruses.
This lesson describes the different types of pathogens that can cause communicable diseases in plants and animals. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (a) of the OCR A-level Biology specification but as this is the first lesson in module 4, it has been specifically planned to make links to upcoming topics such as phagocytosis, vaccinations and classification.
viruses - HIV/AIDS, influenza, TMV
bacteria - TB, cholera, ring rot
protoctista - malaria
fungi - athlete’s foot, black sigatoka, ringworm,
The diseases shown above are covered by the detailed content of this lesson and the differing mechanisms of action of the four types of pathogens are discussed and considered throughout. For example, time is taken to describe how HIV uses a glycoprotein to attach to T helper cells whilst toxins released by bacteria damage the host tissue and the Plasmodium parasite is transmitted from one host to another by a vector to cause malaria.
The accompanying worksheets contain a range of exam-style questions, including a mathematical calculation, and mark schemes are embedded into the PowerPoint to allow students to immediately assess their understanding.
This fully-resourced lesson describes how the mechanisms of root pressure and transpiration pull move water upwards in the xylem to the leaves. The detailed PowerPoint and accompanying, differentiated resources have primarily been designed to cover the second part of point 7.2 [c] of the CIE International A-level Biology specification but also cover 7.2 [b] as the cohesion-tension theory and adhesion are described and explained.
This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and the interaction between cohesion, tension and adhesion in capillary action is explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues. The final part of the lesson considers the journey of water through the leaf and ultimately out of the stomata in transpiration. A step by step guide using questions to discuss and answer as a class is used to support the students before the final task challenges them to summarise this movement through the leaf.
This fully-resourced lesson describes how it’s possible for 1 gene to give rise to multiple products as a result of post-transcriptional modification of mRNA. The detailed PowerPoint and accompanying resources have been designed to cover point 7.2 (iii) of the Edexcel A-level Biology B specification.
The lesson begins with a knowledge recall as the students have to recognise the definition of a gene as a sequence of bases on a DNA molecule that codes for a sequence of amino acids in a polypeptide chain. This description was introduced in topic 1 and the aim of the start of the lesson is to introduce the fact that despite this definition, most of the nuclear DNA in eukaryotes doesn’t actually code for proteins. A quick quiz competition is then used to introduce exons as the coding regions within a gene before students are challenged to predict the name of the non-coding regions and then to suggest a function for these introns. At this point, the students will complete a task that acts as a prior knowledge check where they have to identify the 6 errors in the descriptive passage about the lac operon and its role in the regulation of gene expression in prokaryotes. Moving forwards, pre-mRNA as a primary transcript is introduced and students will learn that this isn’t the mature strand that moves off to the ribosome for translation. Instead, a process called splicing takes place where the introns are removed and the remaining exons are joined together. Another quick quiz round leads to an answer of 20000 and students will learn that this is the number of protein-coding genes in the human genome. Importantly, the students are then told that the number of proteins that are synthesised is much higher than this value and a class discussion period encourages them to come up with biological suggestions for this discrepancy between the two numbers. The lesson concludes with a series of understanding and application questions where students will learn that alternative splicing enables a gene to produce more than a single protein and that this natural phenomenon greatly increases biodiversity.
This fully-resourced lesson describes the regulatory mechanisms that control gene expression at a transcriptional level. The detailed PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification which states that the students knowledge should include the lac operon and examples of transcription factors in eukaryotes. .
This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in module 2.1.3, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
This fully-resourced lesson describes how allopatric or sympatric speciation may result from geographical, ecological or behavioural separation. The engaging PowerPoint and accompanying resources have been designed to cover point 17.3 [c] of the ICE A-level Biology specification and uses actual biological examples to increase the relevance and likelihood of understanding
The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.
This lesson describes self and non-self antigens and how a failure to distinguish between the two is the mechanism of autoimmune diseases. The PowerPoint and accompanying worksheets have been primarily designed to cover points 11.1 (d & f) of the CIE A-level Biology specification and describe examples of these diseases including myasthenia gravis, but this lesson can also be used to revise the content of the earlier topics as well as the previous lessons in topic 10 & 11 through the range of activities that are included
The first part of the lesson focuses on the antigens and explains how the failure of the immune system cells to recognise these molecules on the outside of a cell or organism elicits an immune response. Moving forwards, the students are challenged to recognise diseases from descriptions and then to use the first letters of their names to form the term, autoimmune. In doing so, the students will discover that rheumatoid arthritis, ulcerative colitis, type I diabetes mellitus, multiple sclerosis and myasthenia gravis are all examples of autoimmune diseases. The next part of the lesson focuses on the mechanism of these diseases where the immune system cells do not recognise the antigens (self-antigens) on the outside of the healthy cells, and therefore treats them as foreign antigens, resulting in the production of autoantibodies against proteins on these healthy cells and tissues. Key details of the autoimmune diseases stated above and lupus are described and links to previously covered topics as well as to future topics such as the pancreas and nervous system are made. The students will be challenged by the numerous exam-style questions, all of which have mark schemes embedded into the PowerPoint to allow for immediate assessment of progress.
This lesson has been designed to cover the content as detailed in point 5.2.1 (The structure and function of the human nervous system) of the AQA GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. Reflex reactions are also considered and discussed so that students can recognise how these automatic and rapid responses avoid damage and pain to humans. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and YOU DO THE MATH, are used to introduce new terms and important values in a fun and memorable way.
This lesson has been written for GCSE-aged students who are studying the AQA GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
This fully-resourced lesson has been designed to cover point 8.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification that states that students should know the structures and function of synapses in nerve impulse transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic and to make links to specification point 8.15
The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission.
Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics.
This fully-resourced lesson looks at how heart rate is controlled by the cardiovascular control centre in the medulla oblongata. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the first part of point 7.9 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but also ties in well with previously covered topics and provides a good introduction to control systems which are covered later in topic 7 and 8.
This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
This fully-resourced lesson looks at the roles of glycolysis in aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 7.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification.
The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed.
This lesson has been written to tie in with the other uploaded lessons on the Link reaction, Krebs cycle, oxidative phosphorylation and the production of lactate.
This lesson has been designed to cover the higher tier content of specification point 5.3.4 (Hormones in human reproduction) which is found in topic 5 of the AQA GCSE Biology & Combined Science specifications. A wide range of activities will engage and motivate the students whilst the content is covered in detail and understanding checks are included at regular points to enable the students to self-assess their new found knowledge.
The following Biology is covered in this lesson:
Reproductive hormones in the development of secondary sexual characteristics
The role of testosterone as the main male reproductive hormone
The role of oestrogen and progesterone in the repair and maintenance of the uterus lining
The role of FSH and LH in the maturation of an egg and ovulation
The interaction of these four hormones in the control of the menstrual cycle
The final part of the lesson involves a number of questions where the students are challenged to apply their knowledge to unfamiliar situations
This lesson has been designed for GCSE-aged students who are taking the AQA GCSE Biology or Combined Science course but it is also suitable for younger students who are looking into this topic as part of the reproduction module
This revision resource includes exam questions, understanding checks and quiz competitions, all of which have been designed with the aim of motivating and engaging the students whilst they assess their understanding of the content found in topic 1.2 (Respiration and the respiratory system in humans) of the WJEC GCSE Biology specification.
The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention:
The need and purpose of the respiratory system
The function of the mucus and cilia in the trachea and the effect of smoking on these structures
The structure of the alveolus and its blood supply
The mechanisms of inspiration and expiration
The process of aerobic respiration and the release of energy in the form of ATP
Anaerobic respiration and the production of lactic acid
This revision resource includes a range of activities that will act to engage and motivate the students whilst they assess their understanding of the Animal nutrition content (topic B6) of the CIE IGCSE Combined Science specification for examination in June and November 2020 and 2021. There are exam questions with explained answers as well as quick tasks and quiz competitions such as “Have you got the right BALANCE” where students are challenged to recognise whether a statement about the balanced diet is accurate or not.
The lesson was designed to cover as much content as possible but the following topics have received particular attention:
Mechanical digestion
Chemical digestion by digestive enzymes
Amylase and the break down of starch
The adaptations of the small intestine to allow absorption
The roles of the hydrochloric acid in gastric juice
The break down of lipids in the small intestine
The components of a balanced diet
This resource includes a detailed and engaging PowerPoint (51 slides) and a worksheet which is differentiated two ways. Efforts have been made to make links to other topics such as enzymes (B4) so students can see the importance of being able to make connections in their answers
The range of exam questions, understanding checks and quiz competitions that have been written into this revision lesson will help to motivate and engage the students whilst they assess their understanding of the content found in topic 1.3 (Digestion and the digestive system in humans) of the WJEC GCSE Biology specification. The resource includes a detailed and engaging Powerpoint (51 slides) and an associated worksheet, which has been differentiated to help differing abilities to access the work.
The range of activities have been designed to cover as much of the content as possible but the following sub-topics have been given particular attention:
The movement of food by peristalsis
The role of carbohydrase, protease and lipase enzymes in digestion
The tests for the presence of starch and glucose
The roles of the stomach and small intestine in digestion
The function of bile in the break down of fats
The need for a balanced diet and implication for health of excess sugar and salt in foods
This engaging lesson looks at the role of haemoglobin in transporting oxygen and carbon dioxide and compares the dissociation curves for foetal and adult haemoglobin. The detailed PowerPoint has been designed to cover points 3.1.2 (i & j) of the OCR A-level Biology A specification and includes references to the role of carbonic anhydrase and the formation of haemoglobinic acid and carbaminohaemoglobin.
The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. At this point, foetal haemoglobin and its differing affinity of oxygen is introduced and students are challenged to predict whether this affinity will be higher or lower than adult haemoglobin and to represent this on their dissociation curve.
The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
It is estimated that it will take in excess of 2 hours of A-level teaching time to cover the detail of these two specification points as covered in this lesson