Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1110k+Views

1918k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Positive & negative feedback (Edexcel A-level Biology A)
GJHeducationGJHeducation

Positive & negative feedback (Edexcel A-level Biology A)

(0)
This lesson explains how negative feedback control maintains systems within narrow limits and uses biological examples to describe the meaning of positive feedback. The PowerPoint and accompanying resources have been designed to cover points 7.11 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification but have been planned to provide important details for upcoming topics such as the importance of homeostasis during exercise and the depolarisation of a neurone. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from topics 1 - 6 as well as earlier in topic 7 to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, so that students are prepared for an upcoming lesson on exercise, as well as for the next part of the lesson on negative feedback control. Students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
Classification hierarchy (Edexcel A-level Biology A)
GJHeducationGJHeducation

Classification hierarchy (Edexcel A-level Biology A)

(0)
This lesson describes the classification system, focusing on the biological classification of a species and the 7 taxa found above this lowest taxon. The engaging PowerPoint and accompanying resource have been designed to cover point 4.6 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and also describes the binomial naming system which uses the genus and species. The lesson also contains links to upcoming lessons where molecular phylogeny is described and the three-domain system is covered in greater detail with a focus on the results of Carl Woese’s rRNA study The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that classification is a means of organising the variety of life based on relationships between organisms using differences and similarities in phenotypes and in genotypes and is built around the species concept and that in the modern-day classification hierarchy, species is the lowest taxon. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn (or recall) the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
Module 4.2.2: Classification and evolution (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.2.2: Classification and evolution (OCR A-level Biology A)

7 Resources
Classification and evolution is a topic that students can find difficult, which may be for a number of reasons that include a lack of engagement during lessons or because these topics are taught quickly as exams approach at the end of year 12. However, a clear understanding is critical, as assessment questions on the content of this module are common and are often worth a significant number of marks. In line with this, the planning of each of the 7 lessons in this bundle has focused on the inclusion of a wide range of tasks that will engage and motivate the students whilst covering the following points as detailed in module 4.2.2 of the OCR A-level Biology A specification: The biological classification of species The taxonomic hierarchy The binomial system of naming species and the advantages of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems, such as the three domains of life The different types of variation Using standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations of organisms to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has implications for human populations If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as these have been uploaded for free: Taxonomic hierarchy and the binomial naming system Adaptations & natural selection
Classification (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Classification (Edexcel Int. A-level Biology)

(0)
This lesson describes classification as a means of organising the variety of life based on relationships between organisms. The engaging PowerPoint and accompanying resource have been designed to cover point 4.14 (i) of the Edexcel International A-level Biology specification and focuses on the classification hierarchy where species is the lowest taxon but also describes the binomial naming system which uses the genus and species. The lesson also contains links to the next lesson where molecular phylogeny is described and the three-domain system is covered in greater detail with a focus on the results of Carl Woese’s rRNA study The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that classification is a means of organising the variety of life based on relationships between organisms using differences and similarities in phenotypes and in genotypes and is built around the species concept and that in the modern-day classification hierarchy, species is the lowest taxon. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn (or recall) the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
Three-domain model of classification (Edexcel A-level Biology B)
GJHeducationGJHeducation

Three-domain model of classification (Edexcel A-level Biology B)

(0)
This lesson describes the evidence that led to the three-domain model of classification as an alternative to the five-kingdom model. The detailed PowerPoint and accompanying resources have been designed to cover point 3.1 (vii) of the Edexcel A-level Biology B specification and focuses on Carl Woese’s detailed study of the ribosomal RNA gene and the need for this evidence to be validated by the scientific community The lesson begins with an introduction of Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a lesson at the start of this topic, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank and will understand that it wasn’t until 13 years after the discovery that it was adopted. Moving forwards, the rest of the lesson describes how molecular phylogeny uses other molecules that can be compared between species for classification purposes. One of these is a protein called cytochrome which is involved in respiration and can be compared in terms of primary structure to determine relationships. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code (as covered in topic 1) and have to explain how mutations to DNA can also be used for comparative purposes.
Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 4: Plant structure and function, Biodiversity and Conservation (Edexcel Int. A-level Biology)

9 Resources
All of the 9 lessons that are included in this bundle are highly detailed and are fully-resourced. The lesson PowerPoints and their accompanying worksheets contain a wide range of tasks that will engage and motivate the students whilst covering the following specification points as set out in topic 4 of the Edexcel International A-level Biology specification: The structure and ultrastructure of plant cells The function of the organelles in plant cells The structure and function of starch and cellulose The similarities and differences between the structures, position and functions of sclerenchyma, xylem and phloem Understand that classification is a means of organising the variety of life based on relationships between organisms New taxonomic groupings The meaning of the terms biodiversity and endemism Know how biodiversity can be measured within a habitat and within a species Comparing biodiversity between habitats using the index of diversity The adaptations of organisms to their environment Use of the Hardy-Weinberg equation Changes in allele frequency are the result of mutation and natural selection Evaluate the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity If you would like to sample the quality of lessons in this bundle then download the cellulose & starch and modern-day classification lessons as these have been uploaded for free
Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)
GJHeducationGJHeducation

Biodiversity & Simpson's Index of Diversity (CIE A-level Biology)

(0)
This lesson explains that biodiversity is considered at three levels and describes how the Simpson’s Index of Diversity is used to calculate the biodiversity within a habitat. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 18.1 (a, b & f) of the CIE A-level Biology specification and also covers the meaning of ecosystems and niche as well as some other important ecological terms that are related such as abiotic factors and population. A quiz competition called BIOLOGICAL TERMINOLOGY SNAP runs throughout the lesson and has been included to engage the students whilst challenging them to recognise key terms from their definitions. This quiz will introduce species, ecosystems, biodiversity, endemic, heterozygote, distribution and natural selection and each of these terms is put into context once introduced. A series of exam-style questions to challenge the students to explain how the distribution of fish is affected by abiotic factors in an ecosystem. Once biodiversity is revealed through the quiz competition, the students will learn that they need to consider biodiversity within a habitat, within a species and within different habitats so that they can be compared. The rest of the lesson uses step by step guides, discussion points and selected tasks to demonstrate how to determine species richness and the Simpson’s index of diversity. The heterozygosity index is also introduced as a means to consider genetic variation. Students are challenged with a range of exam-style questions where they have to apply their knowledge and all mark schemes are displayed and clearly explained within the PowerPoint to allow students to assess their understanding and address any misconceptions if they arise This is a detailed lesson with a lot of tasks (some of which are differentiated), so it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to cover all of the content
Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)
GJHeducationGJHeducation

Archaea, Bacteria & Eukarya & virus classification (CIE A-level Biology)

(0)
This lesson describes the characteristic features of the three domains and explains why viruses are not included in this classification. The PowerPoint and accompanying resources have been primarily designed to cover points 18.2 (b) & 18.2 (d) of the CIE A-level Biology specification but also contains tasks that challenge the students on their knowledge of taxonomic hierarchy from this topic and the features of virus from topic 1. The lesson begins with an introduction of the microbiologist Carl Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in the last lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank and will understand that it wasn’t until 13 years after the discovery that it was adopted. Moving forwards, the rest of the lesson explains why viruses are not included in this classification and outlines how they are classified, according to the ICTV, through the type of nucleic acid they contain and whether this is single-stranded or double-stranded
Topic 18.2: Classification (CIE A-level Biology)
GJHeducationGJHeducation

Topic 18.2: Classification (CIE A-level Biology)

3 Resources
This lesson bundle contains 3 lessons which have been intricately planned to build on the knowledge acquired in the previous lesson and in earlier topics of the course to allow students to gain a deep understanding of classification. The lesson PowerPoints and accompanying resources contain a wide range of tasks which will engage and motivate the students whilst all of the content of topic 18.2 of the CIE A-level Biology specification is covered as detailed below: Describe the classification of species into the taxonomic hierarchy of domain, kingdom, phylum, class, order, family, genus and species The characteristic features of the three domains The characteristic features of the kingdoms The classification of viruses, separate to the three-domain model of classification of cellular organisms If you would like to sample the quality of the lessons in this bundle, then download the “features of the kingdoms” lesson as this has been shared for free
Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)

16 Resources
The detailed content, exam-style questions, guided discussion points and quiz competitions that are found in each of the 16 paid lessons that are included in this bundle (as well as the 5 free lessons which are named at the bottom) cover the following specification points in module 4 of the OCR A-level Biology A specification: Module 4.1.1 The different types of pathogen that can cause communicable diseases in plants and animals The means of transmission of animal and plant communicable pathogens The primary non-specific defences against pathogens in animals The structure and mode of action of phagocytes The structure, different roles and modes of action of B and T lymphocytes in the specific immune response The primary and secondary immune responses The structure and general functions of antibodies An outline of the action of opsonins, agglutinins and anti-toxins The differences between active and passive immunity, and between natural and artificial immunity Autoimmune diseases The principles of vaccination Module 4.2.1 How biodiversity can be considered at different levels The random and non-random sampling strategies that are carried out to measure the biodiversity of a habitat How to measure species richness and species evenness The use and interpretation of Simpson’s Index of Diversity How genetic biodiversity may be assessed The ecological, economic and aesthetic reasons for maintaining biodiversity In situ and ex situ methods of maintaining biodiversity International and local conservation agreements made to protect species and habitats 4.2.2 The biological classification of species The binomial system of naming species and the advantage of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems The different types of variation Using the standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has an impact on human populations If you would like to get an idea of the quality of the lessons that are included in this bundle, then download the following five OCR A lessons which have been uploaded for free: Immunity & vaccinations Reasons for maintaining biodiversity Taxonomic hierarchy and the binomial naming system Adaptations and natural selection Transmission of animal and plant pathogens
Topic 17: Selection and evolution (CIE A-level Biology)
GJHeducationGJHeducation

Topic 17: Selection and evolution (CIE A-level Biology)

8 Resources
This bundle contains 8 detailed and engaging lessons, and together they cover a lot of the key content of topic 17 in the CIE A-level Biology specification. Selection and evolution are key processes in Biology but are not always well understood or well explained by students. With this in mind, these lessons have been designed to support students in making links between the different concepts. The following specification points are covered by these lessons: The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Natural selection Environmental factors can act as stabilising, disruptive and directional forces in natural selection Selection, the founder effect and genetic drift affect allele frequencies in populations Using the Hardy-Weinberg principle The molecular evidence that reveals similarities between closely related organisms Allopatric and sympatric speciation If you would like to sample the quality of lessons in this bundle then download the following lessons as these have been shared for free continuous and discontinuous variation molecule evidence and evolution
The mammalian gametes (Edexcel A-level Biology A)
GJHeducationGJHeducation

The mammalian gametes (Edexcel A-level Biology A)

(0)
This lesson describes the relationship between the specialised structural features of the mammalian gametes and their functions. The PowerPoint and accompanying resources have been designed to cover point 3.6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and includes descriptions of the acrosome in the head of the sperm and the zona pellucida in the egg The lessons at the start of topic 3 (Voice of the genome) described the ultrastructure of eukaryotic cells, so this knowledge is referenced throughout the lesson and the students are challenged on their recall and understanding through a range of prior knowledge checks. For example, two of the exam-style questions that are included in the resources challenge the students to explain why a sperm cell is classified as an eukaryotic cell and to recognise the centrioles and the nucleus from structural descriptions. Along with the mitochondria, time is then taken to discuss and to describe the role of these organelles in relation to the function of the sperm cell. When considering the role of the haploid nucleus, links are made to the upcoming topic of meiosis and the events that contribute to variation. The importance of the enzymes that are found inside the acrosome is emphasised and this leads into the second half of the lesson where the layers surrouding the plasma membrane of the egg cell (corona radiata and zona pellucida) are examined The final part of this lesson has been specifically planned to prepare the students for the next lesson in topic 3, where the acrosome reaction, cortical reaction and the fusion of nuclei that are involved in fertilisation are described
Three-domain classification & morphological convergence (WJEC A-level Biology)
GJHeducationGJHeducation

Three-domain classification & morphological convergence (WJEC A-level Biology)

(0)
This lesson introduces the three-domain system and describes some of the biochemical methods used in classification to overcome the problems of morphological convergence. The PowerPoint and accompanying resources have been designed to cover points [c] and [e] in AS unit 2, topic 1 of the WJEC A-level Biology specification The lesson begins with an introduction of Carl Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a previous lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank. Moving forwards, the rest of the lesson considers other molecules that can be compared between species for classification purposes and the primary structure of cytochrome is described and discussed. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code and have to explain how mutations to DNA can also be used for comparative purposes. The use of DNA genetic fingerprinting is briefly introduced and this is described in greater detail in a future lesson about assessing biodiversity at a molecular level
Adaptations of gas exchange surfaces (AQA A-level Biology)
GJHeducationGJHeducation

Adaptations of gas exchange surfaces (AQA A-level Biology)

(0)
This lesson describes the adaptations of gas exchange surfaces in single-celled organisms, insects, bony fish and dicotyledonous plants. The PowerPoint and accompanying worksheets are part of the first lesson in a series of 6 lessons that have been designed to cover the detail of point 3.2 (Gas exchange) of the AQA A-level Biology specification. The lesson has been intricately planned to challenge the students on their understanding of the surface area to volume ratio (as covered in the previous lesson) and to make direct links to upcoming lessons on gas exchange and transport systems in humans. The lesson begins by explaining that single-celled organisms are able to diffuse oxygen and carbon dioxide across their body surface but that as organisms increase in size and their SA/V ratio decreases, they need adaptations at their gas exchange surfaces to be able to obtain the oxygen to meet their metabolic demands. This leads into the next part of the lesson which describes the roles of the following structures in insects and bony fish: spiracles, tracheae, tracheoles and tracheole fluid operculum, gill arch, gill filaments and lamellae The next task challenges the students to use their knowledge of topics 1 and 2 to come up with the letters that form the key term, countercurrent flow. This is a key element of the lesson and tends to be a principle that is poorly understood, so extra time is taken to explain the importance of this mechanism. Students are shown two diagrams, where one contains a countercurrent system and the other has the two fluids flowing in the same direction, and this is designed to support them in recognising that this type of system ensures that the concentration of oxygen is always higher in the oxygenated water than in the blood in the lamellae. The final part of the lesson describes the role of the stomata and the mesophyll cells in the gas exchange of a dicotyledonous plant. Students will learn that guard cells contain chloroplasts which generate ATP and then they are challenged to order a series of statements to form a description of the events that result in the opening of the stomata. The differing structures of the spongy mesophyll and palisade mesophyll cells are then considered before the students are challenged to explain how carbon dioxide moves through the leaf after entering via the stomata and then how water vapour and oxygen leave. Clear links are made to the loss of water vapour by transpiration so students are prepared for the lessons covering this biological process later in topic 3.
Topic 3.2: Gas exchange (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3.2: Gas exchange (AQA A-level Biology)

4 Resources
This bundle contains 4 lessons which cover the following content that’s set out in topic 3.2 (Gas exchange) of the AQA A-level Biology specification: Adaptations of gas exchange surfaces as shown by the gas exchange in single-celled organisms, insects, bony fish and the leaves of dicotyledonous plants The gross structure of the human gas exchange system The essential features of the alveolar epithelium as a surface over which gas exchange takes place The mechanism of breathing All of the lessons are detailed and have been intricately planned to contain a wide range of tasks that will challenge the students on their understanding of the current topic as well as their recall of knowledge from previously-covered topics. In this way, the students are encouraged to make links between biological processes in different topics so they are prepared for assessment questions which do just that. Lessons covering topics 3.1, 3.3 and 3.4 are also uploaded
Gas exchange in insects, fish and mammals (Edexcel A-level Biology B)
GJHeducationGJHeducation

Gas exchange in insects, fish and mammals (Edexcel A-level Biology B)

(0)
This lesson describes how the surfaces in insects, fish and mammals are adapted for gas exchange. The PowerPoint and accompanying worksheets have been designed to cover the detail of point 4.3 (i) of the Edexcel A-level Biology B specification. The lesson has been intricately planned to challenge the students on their understanding of the surface area to volume ratio (as covered in topic 4.1) and to make direct links to upcoming lessons on the transport systems in humans. The lesson begins by explaining that single-celled organisms are able to diffuse oxygen and carbon dioxide across their body surface but that as organisms increase in size and their SA/V ratio decreases, they need adaptations at their gas exchange surfaces to be able to obtain the oxygen to meet their metabolic demands. This leads into the next part of the lesson which describes the roles of the following structures in insects and bony fish: spiracles, tracheae, tracheoles and tracheole fluid operculum, gill arch, gill filaments and lamellae The next task challenges the students to use their knowledge of topics 1, 2 and 3 to come up with the letters that form the key term, countercurrent flow. This is a key element of the lesson and tends to be a principle that is poorly understood, so extra time is taken to explain the importance of this mechanism. Students are shown two diagrams, where one contains a countercurrent system and the other has the two fluids flowing in the same direction, and this is designed to support them in recognising that this type of system ensures that the concentration of oxygen is always higher in the oxygenated water than in the blood in the lamellae. As the alveoli as a structure of gas exchange was introduced at GCSE, this final part of the lesson has been written to challenge the recall of that knowledge and to build on it. The main focus is the type of epithelium found lining the alveoli and students will discover that a single layer of flattened cells known as simple, squamous epithelium acts to reduce the diffusion distance. Again, students will have met this in a lesson in topic 2 on specialised cells (and tissues) so a number of prior knowledge checks are used alongside current understanding checks. The following features of the alveolar epithelium are also covered: Surface area Moist lining Production of surfactant The maintenance of a steep concentration gradient As a constant ventilation supply is critical for the maintenance of the steep concentration gradient, the final task considers the mechanism of ventilation
Module 3.1.1: Exchange surfaces (OCR A-level Biology A)
GJHeducationGJHeducation

Module 3.1.1: Exchange surfaces (OCR A-level Biology A)

5 Resources
This lesson bundle contains 5 lesson PowerPoints and together with their accompanying worksheets, they will engage and motivate the students whilst covering the following specification points in module 3.1.1 (Exchange surfaces) of the OCR A-level Biology A specification: The need for specialised exchange surfaces The features of an efficient exchange surface The structures and functions of the components of the mammalian gaseous exchange system The mechanism of ventilation in mammals The mechanisms of ventilation and gas exchange in bony fish and insects Found interspersed within the detailed A-level Biology content in the slides are current understanding and prior knowledge checks and these are followed by displayed mark schemes to allow students to assess their progress. There are also differentiated tasks, guided discussion periods and quiz competitions that introduce key values and terms in a fun and memorable way If you would like to see the quality of lessons included in this bundle, then download the mammalian gaseous exchange system and ventilation and gas exchange in insects lessons as these have been uploaded for free
Organisation of multicellular organisms (Edexcel SNAB)
GJHeducationGJHeducation

Organisation of multicellular organisms (Edexcel SNAB)

(0)
This lesson describes how the cells of multicellular organisms are organised into tissues, tissues into organs and organs into systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point 3.13 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and focuses on the levels of organisation in humans and plants The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and 2 and earlier in topic 3 where blood clotting, proteins, osmosis, organelles, methods of transport, carbohydrates and enzymes were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. This leads into a section about cystic fibrosis as this genetic disorder impairs the functioning of these systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
Levels of organisation (WJEC A-level Biology)
GJHeducationGJHeducation

Levels of organisation (WJEC A-level Biology)

(0)
This lesson describes the levels of organisation, including the aggregation of cells into tissues, tissues into organs and organs into organ systems. The detailed and engaging PowerPoint and accompanying resources have been designed to cover point (d) of AS unit 1, topic 2 of the WJEC A-level Biology specification and focuses on the levels of organisation in humans and plants. Please note that the lesson does not contain prepared slides of tissue as this is covered in a later lesson. The lesson begins by using the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students are challenged to remember how the shape and arrangement of these cells differ in the trachea and alveoli in relation to their function. The link between specialised cells and tissues is made at this point of the lesson so students are reminded that a tissue is a group of cells that work together to perform a specific function or set of functions. Moving forwards, a quick quiz competition will challenge the students to recognise the liver, kidney, spinal cord and pancreas from a brief functional description and this leads into a series of questions that links back to topics 1 and earlier in topic 2 where proteins, organelles and carbohydrates were originally covered. These prior knowledge checks are found throughout the lesson, along with current understanding checks, and all of the mark schemes are embedded into the PowerPoint to allow students to assess their progress. In terms of organ systems, a quick task challenges them to recognise 8 of the 11 that are found in humans from descriptions and this leaves them to identify the gaseous exchange, digestive and reproductive systems as the remaining 3. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy cells in the mesophyll layer and the guard cells are covered at length and in detail. The cells found in the xylem and phloem tissue are also discussed.
Structure and functions of organelles (WJEC A-level Biology)
GJHeducationGJHeducation

Structure and functions of organelles (WJEC A-level Biology)

(0)
This lesson describes the structure and functions of the organelles that are found in eukaryotic cells. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point (a) in AS Unit 1, topic 2 of the WJEC A-level Biology specification As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all 6 modules in the OCR course and intricate planning has ensured that links to the lessons earlier in AS unit 1 are made as well as to the upcoming topics in the other units. The lesson uses a wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, to maintain motivation and engagement whilst describing the relationship between the structure and function of the following organelles: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi body lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane vacuole chloroplasts plasmodesmata All of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks