Hero image

GJHeducation's Shop

Average Rating4.51
(based on 918 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1209k+Views

2016k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic B4: Community level systems (OCR Gateway A GCSE Biology)
GJHeducationGJHeducation

Topic B4: Community level systems (OCR Gateway A GCSE Biology)

7 Resources
This bundle of 7 lessons covers the majority of content in Topic B4(Community-level systems) of the OCR Gateway A GCSE Biology specification. The topics covered within these lessons include: Ecosystems Abiotic and biotic factors Competition and interdependence Efficiency of biomass transfer The Carbon cycle The Nitrogen cycle Decomposers All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Evidence for Evolution
GJHeducationGJHeducation

Evidence for Evolution

(1)
A detailed lesson presentation (37 slides) and associated worksheets that looks at the different pieces of evidence that scientists use to support evolution and discusses how these support the theory. The lesson begins by challenging students to decide which piece of evidence is the key piece in supporting evolution (fossils). Students will then have to arrange a number of statements to describe how a fossil is formed. Students are introduced to the fossil record and questions are used to check that they understand where the oldest fossils would be found. Moving forwards, students are given three pieces of evidence that would be observed in the fossil record and they are challenged to explain how each of these supports the theory of evolution. Quick competitions are then used to get the students to see some extinct organisms in the Dodo and Woolly Mammoth and again they are questioned on how extinct animals support the theory of evolution. Further evidence in rapid changes in species and molecular comparison is discussed. There are regular progress checks throughout the lesson so that students can assess their understanding and there is a set homework included.
Types of plant responses (OCR A-level A)
GJHeducationGJHeducation

Types of plant responses (OCR A-level A)

(0)
This detailed lesson describes the different types of plant responses, including responses to abiotic stress and herbivory and the range of tropisms. The PowerPoint and accompanying resources have been primarily designed to cover the content set out in point (a) of module 5.1.5 of the OCR A-level biology A specification, but as the role of auxins in phototropism and gravitropism are also described, some aspects of point (b) are covered. This lesson also acts as an excellent revision tool as the students’ knowledge of previously-covered topics including classification, defences against pathogens, and biological molecules are constantly challenged. The lesson begins with one of these challenges, where the students must recognise 7 key terms from their descriptions and use the respective 1st letters to reveal the key term, stimuli. This leads into the recognition of the need for plants to respond to these changes in the environment to increase their chances of survival. Students will have briefly encountered auxins at GCSE and this first part of the lesson builds on this knowledge, introducing IAA, and ensuring that they know the fundamentals, including how these hormones move from the tips to the growing regions. A series of application questions will challenge them to describe how plants display positive phototropism and roots display positive gravitropism. Moving forwards, the students will learn that nastic responses are independent of the direction of the external stimuli and the Venus flytrap is used as an example. Again, a series of exam-style questions will challenge the students on their knowledge of topics related to this carnivorous plant. The remainder of the lesson considers responses to abiotic stress, such as water stress and the herbivory response, including the production of alkaloids and pheromones. The answers to all understanding checks are embedded into the PowerPoint to allow the students to assess their progress.
Investigating diversity (AQA A-level Biology)
GJHeducationGJHeducation

Investigating diversity (AQA A-level Biology)

(1)
This lesson describes how genetic diversity within, or between species, can be investigated by comparison of characteristics or biological molecules. The PowerPoint and accompanying worksheets are primarily designed to cover the content of point 4.7 of the AQA A-level Biology specification but as this is the last lesson in the topic, it has also been planned to contain a range of questions, tasks and quiz rounds that will challenge the students on their knowledge and understanding of topic 4. Over the course of the lesson, the students will discover that comparisons of measurable or observable characteristics, DNA and mRNA sequences and the primary structure of common proteins can all be used to investigate diversity. Links are continually made to prior learning, such as the existence of convergent evolution as evidence of the need to compare biological molecules as opposed to the simple comparison of phenotypes. The issues associated with a limited genetic diversity are discussed and the interesting biological example of the congenital dysfunctions consistently found in the Sumatran tigers in captivity in Australia and New Zealand is used to demonstrate the problems of a small gene pool. Moving forwards, the study of the 16S ribosomal RNA gene by Carl Woese is introduced and students will learn that this led to the adoption of the three-domain system in 1990. The final part of the lesson describes how the primary structure of proteins like cytochrome c that is involved in respiration and is therefore found in most living organisms can be compared and challenges the students to demonstrate their understanding of protein synthesis when considering the differences between humans and rhesus monkeys.
The brain (AQA GCSE Biology)
GJHeducationGJHeducation

The brain (AQA GCSE Biology)

(1)
This fully-resourced lesson has been designed to cover the content of specification point 5.2.2 (The brain) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging PowerPoint (33 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as cancer. The following content is covered in this lesson: The functions of the cerebral cortex, medulla and cerebellum Identification of the regions of the brain on an external and internal diagram The early use of stroke victims to identify functions The key details of the MRI scanning technique The difficulties of diagnosing and treating brain disorders and disease As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the functionality of the regions in more detail
Topic 5.1: Photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5.1: Photosynthesis (AQA A-level Biology)

4 Resources
This bundle of detailed lesson PowerPoints and accompanying resources have been designed to cover the content of topic 5.1 (Photosynthesis) in the AQA A-level Biology specification. This cellular reaction can prove difficult for the students to understand, so extra planning has gone into these 4 lessons to ensure that the key details of the reactions are embedded and understanding is constantly checked through a variety of activities. All of the exam-style questions which are used in these current understanding and prior knowledge checks have mark schemes that are included in the PowerPoint to allow the students to assess their work. If you would like to sample the quality of these lessons, download the chloroplast structure lesson as this has been uploaded for free.
Ecosystems and biomass (AQA A-level Biology)
GJHeducationGJHeducation

Ecosystems and biomass (AQA A-level Biology)

(1)
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
Chi-squared test (OCR A-level Biology)
GJHeducationGJHeducation

Chi-squared test (OCR A-level Biology)

(1)
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point 6.1.2 © of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the test to compare the observed and expected results of a genetic cross The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
Module 4.1.1: Communicable diseases, disease prevention and the immune system (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4.1.1: Communicable diseases, disease prevention and the immune system (OCR A-level Biology A)

8 Resources
This lesson bundle contains 8 detailed lesson PowerPoints and their accompanying resources and all of them have been planned at length to engage and motivate the students whilst covering the biological content of module 4.1.1 of the OCR A-level Biology A specification. The wide range of tasks which are contained with each of these lessons cover the following specification points: The different types of pathogen that can cause communicable diseases in plants and animals The means of transmission of animal and plant communicable pathogens The primary non-specific defences against pathogens in animals The structure and mode of action of phagocytes The structure, different roles and modes of action of B and T lymphocytes in the specific immune response The primary and secondary immune responses The structure and general functions of antibodies An outline of the action of opsonins, agglutinins and anti-toxins The difference between active and passive immunity, and between natural and artificial immunity Autoimmune diseases The principles of vaccination and the role of vaccination programmes in the prevention of epidemics If you would like to sample the quality of the lessons in this bundle, then download the “Transmission of animal and plant pathogens” and “immunity & vaccinations” lessons as these have been uploaded for free
Principles of DNA sequencing (OCR A-level Biology)
GJHeducationGJHeducation

Principles of DNA sequencing (OCR A-level Biology)

(0)
This detailed lesson describes the principles of DNA sequencing and has been designed to cover the first part of point 6.1.3 (a) of the OCR A-level Biology A specification. Fred Sanger’s chain termination method is used as the example to guide the students through the details of each step. The lesson begins with a focus on the common ingredients of the process such as DNA polymerase, DNA nucleotides and primers. Links are made to module 2.1.3 where nucleic acids were initially met through a series of prior knowledge check questions. Time is then taken to explain why these short lengths of synthesised nucleotides are necessary and this will support students when primers are met in the PCR and genetic engineering. Moving forwards, students will recognise how the modification to the nucleotide means that the chain terminates once a modified nucleotide is added into the sequence and that these have been radioactively labelled. Gel electrophoresis is introduced and an outline of the process given to provide knowledge to build on when this is encountered later in the module. A series of exam-style questions allow students to assess their understanding of this potentially difficult topic before students are encouraged to consider the limitations of the method so they are prepared to meet the new methods in upcoming lessons. A number of quiz competitions run throughout the lesson to maintain engagement and to introduce terms and values in a memorable way
Topic 5.2: Respiration (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5.2: Respiration (AQA A-level Biology)

7 Resources
All 7 of the lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 5.2 (Respiration) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The phosphorylation of glucose and the production and oxidation of triose phosphate The production of lactate or ethanol in anaerobic conditions The Link reaction The oxidation-reduction reactions of the Krebs cycle The synthesis of ATP by oxidative phosphorylation The chemiosmotic theory Lipids and proteins as respiratory substrates The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other sub-topics within this topic and earlier topics If you would like to see the quality of the lessons, download the anaerobic respiration and oxidative phosphorylation lessons as these have been uploaded for free
Maths in Edexcel A-level Biology REVISION
GJHeducationGJHeducation

Maths in Edexcel A-level Biology REVISION

(1)
The Pearson Edexcel A-level Biology A (Salters Nuffield) specification states that a minimum of 10% of the marks across the assessment papers will require the use of mathematical skills. This revision lesson has been designed to include a wide range of activities that challenge the students on these exact skills because success in the maths in biology questions can prove the difference between one grade and the next! Step-by-step guides are used to walk students through the application of a number of the formulae and then exam-style questions with clear mark schemes (which are included in the PowerPoint) will allow them to assess their progress. Other activities include differentiated tasks, group discussions and quick quiz competitions such as “FROM NUMBERS 2 LETTERS” and “YOU DO THE MATH”. The lesson has been written to cover as much of the mathematical requirements section of the specification as possible but the following have been given particular attention: Hardy-Weinberg equation Chi-squared test Calculating size Converting between quantitative units Standard deviation Estimating populations of sessile and motile species Percentages and percentage change Cardiac output Geometry Due to the detail and extensiveness of this lesson, it is estimated that it will take in excess of 2/3 hours of A-level teaching time to work through the activities and it can be used throughout the duration of the course
AQA GCSE Biology B7 REVISION (Ecology)
GJHeducationGJHeducation

AQA GCSE Biology B7 REVISION (Ecology)

(1)
An engaging lesson presentation (75 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B7(Ecology) of the AQA GCSE Biology specification (specification unit B4.7). The topics that are tested within the lesson include: Communities Abiotic factors Biotic factors Levels of organisation Recycling materials Decomposition Deforestation Global warming Trophic levels Pyramids of biomass Transfer of biomass Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
Edexcel GCSE Biology REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Biology REVISION LESSONS

9 Resources
This bundle of 9 revision lessons covers the specification content in all of the topics of the Pearson Edexcel GCSE Biology 9-1 specification. Topic 1: Key concepts in Biology Topic 2: Cells and control Topic 3: Genetics Topic 4: Natural selection and modification Topic 5: Health, disease and the development of medicines Topic 6: Plant structures and functions Topic 7: Animal coordination, control and homeostasis Topic 8: Exchange and transport in animals Topic 9: Ecosystems and material cycles All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they recognise those areas which will need further attention prior to the exams.
OCR A-Level Biology A REVISION LESSONS
GJHeducationGJHeducation

OCR A-Level Biology A REVISION LESSONS

20 Resources
Each of the 20 revision lessons included in this bundle has been designed to motivate and engage the students whilst they are challenged on their knowledge of the content of the OCR A-Level Biology A specification. The detailed PowerPoints contain a wide range of activities which include exam questions with explained answers, differentiated tasks and quiz competitions that are supported by the accompanying worksheets. The modules covered in this bundle are: Module 2.1.1: Cell structure Module 2.1.2: Biological molecules Module 2.1.3: Nucleotides and nucleic acids Module 2.1.4: Enzymes Module 2.1.5: Biological membranes Module 2.1.6: Cell division, cell diversity and cellular organisation Module 3.1.2: Transport in animals Module 3.1.3: Transport in plants Module 4.1.1: Communicable diseases, disease prevention and the immune system Module 4.2.1: Biodiversity Module 4.2.2: Classification and evolution Module 5.1.2: Excretion as an example of homeostatic control Module 5.1.3: Neuronal communication Module 5.1.4: Hormonal communication Module 5.1.5: Plant and Animal responses Module 5.2.1: Photosynthesis Module 5.2.2: Respiration Module 6.1.1: Cellular control Module 6.1.2: Pattens of inheritance Module 6.1.3: Manipulating genomes Helpful hints are provided throughout the lessons to help the students with exam technique and in structuring their answers. These lessons are suitable for use throughout the course and can be used for revision purposes at the end of a module or in the lead up to mocks or the actual A LEVEL exams
Edexcel A-level Biology A TOPIC 8 REVISION (Grey Matter)
GJHeducationGJHeducation

Edexcel A-level Biology A TOPIC 8 REVISION (Grey Matter)

(1)
This is a fully-resourced revision lesson that includes a detailed and engaging powerpoint (81 slides) that uses a combination of exam questions, understanding checks, quick differentiated tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 8 (Grey Matter) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The specification points that are tested within the lesson include: Know the structure and function of sensory, relay and motor neurones including the role of Schwann cells and myelination. Understand how the nervous systems of organisms can cause effectors to respond to a stimulus. Understand how the pupil dilates and contracts. Understand how a nerve impulse (action potential) is conducted along an axon including changes in membrane permeability to sodium and potassium ions and the role of the myelination in saltatory conduction. Know the structure and function of synapses in nerve impulse transmission, including the role of neurotransmitters, including acetylcholine. Understand how IAA bring about responses in plants to environmental cues Know the location and functions of the cerebral hemispheres, hypothalamus, cerebellum and medulla oblongata in the human brain. Understand how magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and computed tomography (CT) scans are used in medical diagnosis and the investigation of brain structure and function. Understand how imbalances in certain, naturally occurring brain chemicals can contribute to ill health, including dopamine in Parkinson’s disease and serotonin in depression, and to the development of new drugs. Understand the effects of drugs on synaptic transmissions, including the use of L-Dopa in the treatment of Parkinson’s disease and the action of MDMA in Ecstasy. Students will be engaged by the numerous quiz rounds such as “From NUMBERS 2 LETTERS” and “COMMUNICATE the WORD” whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Genetic engineering (OCR A-level Biology)
GJHeducationGJHeducation

Genetic engineering (OCR A-level Biology)

(0)
This extensive and fully-resourced lesson describes the principles and explains the techniques used in the production of recombinant DNA in genetic engineering. Both the engaging PowerPoint and accompanying resources have been written to cover points 6.1.3 (f) (i & ii) of the OCR A-level Biology A specification. The lesson begins with a definition of genetic engineering and recombinant DNA to allow students to begin to understand how this process involves the transfer of DNA fragments from one species to another. Links are made to the genetic code and transcription and translation mechanisms, which were met in module 2, in order to explain how the transferred gene can be translated in the transgenic organism. Moving forwards, the method involving reverse transcriptase and DNA polymerase is introduced and their knowledge of the structure of the polynucleotides and the roles of enzymes is challenged through questions and discussion points. Restriction enzymes are then introduced and time is taken to look at the structure of a restriction site as well as the production of sticky ends due to the staggered cut on the DNA. A series of exam-style questions with displayed mark schemes are used to allow the students to assess their current understanding. The second half of the lesson looks at the culture of transformed host cells as an in vivo method to amplify DNA fragments. Students will learn that bacterial cells are the most commonly transformed cells so the next task challenges their recall of the structures of these cells so that plasmid DNA can be examined from that point onwards. The following key steps are described and explained: • Remove and prepare the plasmid to act as a vector • Insert the DNA fragment into the vector • Transfer the recombinant plasmid into the host cell • Identify the cells which have taken up the recombinant plasmid • Allow the transformed host cells to replicate and express the novel gene Time is taken to explore the finer details of each step such as the addition of the promoter and terminator regions, use of the same restriction enzyme to cut the plasmid as was used to cut the gene and the different types of marker genes. As well as understanding and prior knowledge checks, quick quiz competitions are used throughout the lesson to introduce key terms such as cDNA and EcoR1 in a memorable way.
Limiting factors of photosynthesis
GJHeducationGJHeducation

Limiting factors of photosynthesis

(0)
A fully-resourced lesson which has been designed for GCSE students and includes an engaging lesson presentation and associated worksheets. This lesson looks at the three limiting factors of photosynthesis, focusing on the graphs that they produce and ensures that students can explain why temperature is a factor. This lesson begins by introducing the students to the definition of a limiting factor. They are challenged to recognise that it would be photosynthesis which is limited by carbon dioxide concentration and light intensity. The third factor, temperature, is not introduced until later in the lesson so that students are given thinking time to consider what it might be. Having been presented with two sets of data, students are asked to draw sketch graphs to represent the trend. The limiting factors on the light intensity graph are taught to the students so they can use this when working out the limiting factors on the carbon dioxide graph. The remainder of the lesson focuses on temperature and more specifically why a change in this factor would cause a change in the rate of photosynthesis because of enzymes. The student’s knowledge of that topic is tested alongside. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding.
Meiosis (AQA A-level Biology)
GJHeducationGJHeducation

Meiosis (AQA A-level Biology)

(0)
This fully-resourced lesson focuses on the events of meiosis which specifically contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover the 4th and final part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how meiosis produces daughter cells that are genetically different from each other. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations. Due to the detail of this lesson, it is estimated that this will take about 2 hours of A-level teaching time to deliver
Mitotic index (AQA A-level biology)
GJHeducationGJHeducation

Mitotic index (AQA A-level biology)

(0)
This lesson explains how to calculate the mitotic index and then explores what a high value may indicate about the tissue that was sampled. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 3 which have been planned to cover the content of point 2.2 of the AQA A-level biology specification. As shown in the cover image, the lesson begins with a bit of fun, as the students are challenged to use three clues to identify three uses of the term index in biology. They’ll learn that the index of diversity is covered in a topic 4 lesson and that this lesson focuses on the mitotic index. The students are challenged on their knowledge of the mitotic cell cycle throughout the lesson and one of these questions is used to introduce the meaning of the index and the formula. A series of exam-style questions challenge them to apply their understanding, and the answers are embedded into the PowerPoint to enable the students to assess their progress. Moving forwards, the different meanings of high values are considered, including growing and repairing tissues, and then to explain how an elevated mitotic index can indicate that cell division has become uncontrolled. This prepares students for the next lesson where tumour formation and cancer will be covered.