Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Module 5.2: Photosynthesis & Respiration (OCR A-level Biology A)
GJHeducationGJHeducation

Module 5.2: Photosynthesis & Respiration (OCR A-level Biology A)

14 Resources
Photosynthesis and respiration are two of the most commonly-assessed topics in the terminal A-level exams but are often poorly understood by students. These 14 lessons have been intricately planned to contain a wide range of activities that will engage and motivate the students whilst covering the key detail to try to deepen their understanding and includes exam-style questions so they are prepared for these assessments. The following specification points in modules 5.2.1 and 5.2.2 of the OCR A-level Biology A course are covered by these lessons: The structure of a chloroplast and the sites of the two main stages of photosynthesis The light-dependent stage of photosynthesis The fixation of carbon dioxide and the light-independent stage of photosynthesis The uses of triose phosphate Factors affecting photosynthesis The need for cellular respiration The structure of the mitochondrion The process and site of glycolysis The link reaction and its site in the cell The process and site of the Krebs cycle The importance of coenzymes in cellular respiration The process and site of oxidative phosphorylation The chemiosmostic theory The process of anaerobic respiration in eukaryotes The relative energy values of carbohydrates, lipids and proteins as respiratory substrates The use of the respiratory quotient Due to the detail of these lessons, it is estimated that it will take in excess of 2 months of A-level lessons to cover this module If you would like to sample the quality of the lessons, download the uses of triose phosphate, link reaction and respiratory substrates lessons as these have been shared for free
Structure of the mammalian liver (OCR A-level biology)
GJHeducationGJHeducation

Structure of the mammalian liver (OCR A-level biology)

(0)
This lesson describes the structure of the mammalian liver, focusing on the blood vessels and bile canaliculi, as well as the hepatocytes. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 2 lessons which cover point 5.1.2 (b) of the OCR A-level biology A specification. As shown on the cover image, the lesson begins with a challenge, where the students have to recognise that the liver is supplied with oxygenated blood by the hepatic artery. Three editions of the quiz “SAY WHAT YOU SEE” are used to introduce three key terms in an engaging and memorable fashion which are hepatic portal vein, sinusoids, and bile canaliculi. Following the introduction of the hepatic portal vein and sinusoids, the students will understand that the liver is supplied by two vessels and that the blood mixes in the sinusoids. Time is then taken to focus on the hepatocytes, through 3 exam-style questions that consider the type of epithelium these liver cells are found in, the microvilli on their surface and the organelles which are abundant based on function. Moving forwards, the lesson discusses the function of the stellate cells that are found in the space of Disse, before a task challenges their recall of content from a previous lesson to reveal the name of the cells that move within the sinusoids, the Kupffer cells. Students will learn that these macrophages breakdown the haemoglobin in old erythrocytes to form bilirubin. This reminds them that liver cells produce bile and the remainder of the lesson discusses how this fluid flows along the bile canaliculi to the ductules which form the common hepatic duct. The 2nd lesson in this 2-part series describes the functions of the mammalian liver.
5.1.2: Excretion as an example of homeostatic control (OCR A-level biology)
GJHeducationGJHeducation

5.1.2: Excretion as an example of homeostatic control (OCR A-level biology)

9 Resources
All 9 lessons included in this bundle are filled with a variety of tasks to maintain engagement whilst covering the detailed content of module 5.1.2 of the OCR A-level biology specification. There are also multiple understanding checks and prior knowledge checks, with answers embedded into the PowerPoint, which allow the students to assess their progress against the current topic and test their ability to make links to previously covered content. This module titled “Excretion as an example of homeostatic control”, considers the removal of the products of cell metabolism and explores the role of the liver, kidneys (and skin) in this process. The functions of the liver and structure of the kidney lessons have been uploaded for free, so you could download these first if you would like to view the quality of this bundle. The specification points not directly covered by the lessons in this bundle are: (b) (ii) [c) (ii) [c] (iii) (f)
Loop of Henle & kangaroo rats (Edexcel A-level biology B)
GJHeducationGJHeducation

Loop of Henle & kangaroo rats (Edexcel A-level biology B)

(0)
This lesson describes how the loop of Henle acts as a countercurrent multiplier to increase the reabsorption of water. The PowerPoint and accompanying resource are part of the 2nd lesson in a series of 2 lessons which have been designed to cover point 9.9 (iii) of the Edexcel A-level biology B specification but also considers the structure of the kidney in the kangaroo rat and therefore also covers point 9.9 (v). The lesson begins by challenging the students to recognise that the glomerular filtrate entering the loop will only contain water, ions and urea if the kidneys are functioning properly. Time is then taken to look at the structure of the loop of Henle, focusing on the descending and ascending limbs, and their differing permeabilities. Students will be reminded that this part of the nephron is located in the renal medulla, before a step-by-step guide is used to describe how the transfer of ions, particularly sodium ions, from the ascending limb to the descending limb, creates a very negative water potential in this region of the kidney. This allows water to move out of the descending limb to the tissue fluid and then into the capillaries. The next part of the lesson challenges students to consider the bigger picture as they learn that this decreasing water potential in the medulla allows water to be reabsorbed from the filtrate in the collecting duct too. The remainder of the lesson uses the real-world examples of the hopping mouse and kangaroo rat to check student understanding, and there are also prior knowledge checks to encourage students to make links to relevant content from earlier topics. All answers are embedded into the PowerPoint.
Excretion (OCR A-level biology)
GJHeducationGJHeducation

Excretion (OCR A-level biology)

(0)
This lesson describes the meaning of excretion, as well as the role of the liver, kidneys, lungs and the skin in the removal of carbon dioxide and urea. The engaging PowerPoint and accompanying resources have been designed to cover point 5.1.2 (a) of the OCR A-level Biology specification and also explains the importance of excretion for homeostasis. The lesson begins by reminding students that excretion is one of the 7 characteristics of living organisms, as introduced within MRS GREN when they were younger. An A-level worthy definition of excretion is then introduced, and time is taken to ensure that students recognise that substances must be products of metabolism to be deemed to be excreted. In line with this, the students are challenged to spot that urea and carbon dioxide need to be excreted whilst faeces is egested. Moving forwards, the role of the liver and then the kidneys in the excretion of urea are described. There is a focus on terminology, specifically prefixes and suffixes, to allow students to understand the meaning of deamination which occurs in the liver. The lesson doesn’t go into huge detail about this process and the subsequent ornithine cycle as these are both covered in an upcoming lesson about the functions of the liver. The transport of carbon dioxide is revisited and prior knowledge checks are used to allow the students to assess their recollection of hydrogen carbonate ions and carbaminohaemoglobin. All answers to these checks as well as any understanding checks are embedded into the PowerPoint. The final part of the lesson explores how the skin is involved in excretion and a link is made to the maintenance of internal conditions within narrow limits by homeostasis.