Hero image

GJHeducation's Shop

Average Rating4.50
(based on 909 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1159k+Views

1965k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Xylem and Phloem (GCSE)
GJHeducationGJHeducation

Xylem and Phloem (GCSE)

(1)
This is a fully-resourced lesson that looks at the functional and structural differences between the transport tissues in a plant, the xylem and phloem. The lesson includes an engaging lesson presentation (41 slides), which includes numerous student-led tasks, progress checks and quick competitions and two question worksheets, one of which is a differentiated version to enable those students who are finding this topic difficult to still be able to access the learning. The lesson begins with the introduction of the two tissues as well as a brief introduction to the substances which they each carry. The next part of the lesson focuses on the xylem cells and the resulting xylem vessel, and key terms such as lignin are brought into the lesson so that students can understand how these cells are waterproofed, which causes them to decay and form hollow tubes. Having met a lot of information, students are challenged to act like an examiner to form a table based question to compare the xylem against the phloem where they have to come up with features which could be compared against. This table will form the backbone of the lesson and students will use it later in the lesson when they have to write summary passages about each of the tissues. Moving forwards, a quick competition is used to enable the students to meet the names of the cells that form the phloem tissue, the sieve tube elements and the companion cells. Students will see how they are involved in the functioning of the phloem and questions are posed which relate to other topics such as the involvement of mitochondria wherever active transport occurs. Progress checks like this are found at regular intervals throughout the lesson so that students can constantly assess their understanding. This lesson has been designed for GCSE students. If you are looking to teach about these tissues but to a higher standard, you could use my uploaded alternative called Xylem and Phloem (A-level)
Sex determination
GJHeducationGJHeducation

Sex determination

(2)
A fully-resourced lesson which looks at how the sex chromosomes which determine gender are inherited in humans. The lesson includes an engaging lesson presentation (24 slides) and an associated worksheet containing knowledge recall and application questions. The lesson begins with a range of different quiz competitions which enable the students to get the answers of X, Y, zygote and 23. With a little bit of assistance, students are challenged to bring these terms together to complete a passage about how the inheritance of either an XX genotype will lead to a female or a XY genotype will lead to a male. Moving forwards, students are told how they will be expected to be able to construct a genetic diagram to show the inheritance of gender and so are given a quick recap before being challenged to do just that. The last part of the lesson gets students to discuss and consider whether females or males are responsible for determining sex in terms of their gametes. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students primarily but the content is suitable for both KS3 and even A-level students
Haemoglobin and the transport of oxygen (AQA A-level Biology)
GJHeducationGJHeducation

Haemoglobin and the transport of oxygen (AQA A-level Biology)

(0)
This engaging lesson looks at the structure of the quaternary protein, haemoglobin, and describes its role with red blood cells in the transport of oxygen. The PowerPoint has been designed to cover the first part of point 3.4.1 of the AQA A-level Biology specification and explains how the cooperative nature of binding results in a loading of each molecule with 4 oxygen molecules and describes how it is unloaded at the respiring cells too. The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. Students will learn that a conformational change upon binding of the first oxygen leads to it being easier to bind future oxygens and that this is known as cooperative binding. This lesson has been written to tie in with the other uploaded lesson on the Bohr effect.
Chromosome mutations (AQA A-level Biology)
GJHeducationGJHeducation

Chromosome mutations (AQA A-level Biology)

(0)
This fully-resourced lesson explores the contributions of the chromosome mutations that arise during meiosis to genetic variation. The engaging PowerPoint and accompanying worksheets have been designed and written to cover the part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how mutations in the numbers of chromosomes can arise spontaneously and significantly contribute to evolution. Over the course of the lesson, students will encounter a number of chromosome mutations but the main focus is chromosome non-disjunction and they will learn that this can result in Down, Turner’s and Klinefelter’s syndromes. Students are guided through a description of the formation of gametes and zygotes with abnormal numbers of chromosomes before being challenged to describe the formation of a zygote with Turner’s syndrome. The key aspects of meiosis, which are taught in a future lesson, are introduced and related to the lead up to the change in chromosome number. Inversion, translocation, duplication and deletion are also introduced and links are made to other topics such as regulatory sequences and gene expression.
Mass transport (AQA A-level Biology)
GJHeducationGJHeducation

Mass transport (AQA A-level Biology)

10 Resources
This fully-resourced bundle includes 10 detailed PowerPoint lessons and their accompanying worksheets which cover the content as set out in topic 3.4 (Mass transport) of the AQA A-level Biology specification. This topic includes sections on mass transport in animals (3.4.1) and mass transport in plants (3.4.2). The lessons have been designed to include a wide range of tasks to maintain motivation whilst ensuring that the understanding of the content is constantly checked and links are made to other topics. The specification points in topic 3.4 which are covered in these lessons are: The haemoglobins The role of haemoglobin in the transport of oxygen The oxyhaemoglobin dissociation curve The Bohr effect The general pattern of blood circulation in a mammal The gross structure of the human heart The valve movements in the cardiac cycle The structure of the blood vessels The formation of tissue fluid The transport of water in the xylem The structure of the phloem tissue Translocation by mass flow If you would like to see the quality of these lessons, download the arteries, tissue fluid and translocation lessons as these have been uploaded for free
Non-specific immune responses (Edexcel A-level Biology A)
GJHeducationGJHeducation

Non-specific immune responses (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the non-specific responses of the body to infection and includes details of phagocytosis, inflammation and interferon release. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover the content of point 6.7 of the Pearson Edexcel A-level Biology A specification but topics including antigen-presentation are also introduced to prepare students for upcoming lessons on the immune response (6.8 & 6.9). At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The importance of cell signalling for an effective immune response is discussed and the rest of the lesson focuses on the release of two chemicals - interferons and histamine. During the interferon section, references are made to a previous lesson on HIV structure and action so students can understand how the release of these signalling proteins helps neighbouring cells to heighten their anti-viral defences. A step by step guide is used to describe the release of histamine in the inflammatory response and the final task challenges students to use this support to form a detailed answer regarding the steps in inflammation.
Pyrosequencing
GJHeducationGJHeducation

Pyrosequencing

(0)
A detailed lesson presentation (37 slides) and associated worksheets that guide students through the DNA sequencing method called pyrosequencing. The lesson focusses on the numerous enzymes and substrates which are involved in the cascade of events which eventually leads to the production of light when the conversion from luciferin to oxyluciferin occurs. A step by step guide is used to show the students how these events occur and the different outcomes are explored. There are regular progress checks throughout the lesson so that students can assess their understanding of this topic and the links to similar topics. This lesson has been designed for A-level students and above
AQA GCSE Science Topic B4 REVISION (Bioenergetics)
GJHeducationGJHeducation

AQA GCSE Science Topic B4 REVISION (Bioenergetics)

(1)
An engaging lesson presentation (68 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Biology topic B4 (Bioenergetics) of the AQA GCSE Combined Science specification (specification unit B4.4). The topics that are tested within the lesson include: Photosynthesis reaction Rate of photosynthesis Uses of glucose from photosynthesis Aerobic respiration Anaerobic respiration Response to exercise Students will be engaged through the numerous activities including quiz rounds like “Take a STEP back” and “Shine a LIGHT on the errors” whilst crucially being able to recognise those areas which need further attention
AQA GCSE Science B7 REVISION (Ecology)
GJHeducationGJHeducation

AQA GCSE Science B7 REVISION (Ecology)

(2)
An engaging lesson presentation (63 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Biology unit B7 (Ecology) of the AQA GCSE Combined Science specification (specification unit B4.7). The topics that are tested within the lesson include: Communities Abiotic factors Biotic factors Levels of organisation Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
Topic 14.1: Homeostasis in mammals (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 14.1: Homeostasis in mammals (CIE International A-level Biology)

7 Resources
This bundle contains 7 fully-resourced and detailed lessons that have been designed to cover the content of topic 14.1 of the CIE International A-level Biology specification which concerns homeostasis in mammals. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and previous knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged. The following sub-topics are covered in this bundle of lessons: The importance of homeostasis The role of negative feedback mechanisms in the homeostatic control systems The role of the nervous and endocrine systems in homeostasis Deamination of amino acids and the urea cycle The gross structure of the kidney and the detailed structure of the nephron The process of ultrafiltration and selective reabsorption in the formation of urine The roles of the hypothalamus, posterior pituitary gland, ADH and the collecting ducts in osmoregulation The regulation of blood glucose concentration by the release of insulin and glucagon The role of cyclic AMP as a secondary messenger The stages of cell signalling If you want to see the quality of the lessons before purchasing then the lesson on osmoregulation is a free resource to download
ELISA test (AQA A-level Biology)
GJHeducationGJHeducation

ELISA test (AQA A-level Biology)

(1)
This fully-resourced lesson describes how antibodies are used in the enzyme-linked immunosorbent assay (ELISA) test. The PowerPoint and accompanying resources are part of the last lesson in a series of 7 which have been designed to cover the details within point 2.4 of the AQA A-level specification. As the last lesson in this sub-topic, prior knowledge checks are included throughout the lesson which challenge the students on their knowledge of antibodies, immunity and protein structure. The lesson begins by challenging the students to use the details of a poster to recognise that individuals who have recovered from COVID-19 could donate plasma and the antibodies be infused into newly infected individuals. They are then expected to answer a series of exam-style questions where they have to describe the structure of these specific antibodies, recognise this as artificial, passive immunity and describe the potential problems should the virus mutate and the shape of its antigens change. This leads into the introduction of the use of antibodies in other ways, namely the ELISA test. The methodology of this test has been divided into four key steps which students will consider one at a time and then answer further questions about key details such as the immobilisation of the antigen and the removal of proteins and antibodies that have not bound by the washing with the detergent after each step. The lesson focuses on the use of this test for medical diagnosis but other uses such as plant pathology and the detection of allergens is briefly introduced at the end of the lesson.
Topics 10 & 11: Infectious disease & Immunity (CIE A-level Biology)
GJHeducationGJHeducation

Topics 10 & 11: Infectious disease & Immunity (CIE A-level Biology)

9 Resources
This lesson bundle contains 9 detailed and engaging lessons which have been designed to cover the following content in topics 10 & 11 of the CIE A-level Biology specification: 10.1: Infectious diseases The meaning of the term disease and the difference between infectious and non-infectious diseases The name and type of pathogen that causes cholera, malaria, TB, HIV/AIDS, smallpox and measles Explain how cholera, malaria, TB, HIV and measles are transmitted 10.2: Antibiotics Outline how penicillin acts on bacteria and why antibiotics do not affect viruses Outline how bacteria become resistant to antibiotics with reference to mutation and selection Discuss the consequences of antibiotic resistance and the steps that can be taken to reduce its impact 11.1: The immune system State that phagocytes have their origin in bone marrow and describe their mode of action Describe the modes of action of B and T lymphocytes The meaning of the term immune response, with reference to antigens, self and non-self Explain the role of memory cells in long term immunity Autoimmune diseases as exemplified by myasthenia gravis 11.2: Antibodies and vaccination Relate the molecular structure of antibodies to their functions Distinguish between active and passive, natural and artificial immunity and explain how vaccination can control disease Each of the lesson PowerPoints is accompanied by worksheets which together contain a wide range of tasks that will engage and motivate the students whilst challenging them on their understanding of the current topic as well as previously-covered topics. If you would like to get an understanding of the quality of the lessons in this bundle, then download the transmission of infectious diseases and phagocytes and phagocytosis lessons as these have been shared for free.
Antibiotic resistance (CIE A-level Biology)
GJHeducationGJHeducation

Antibiotic resistance (CIE A-level Biology)

(0)
This lesson outlines how bacteria become resistant to antiobiotics and discusses its consequences and the steps taken to reduce its impact. The PowerPoint and accompanying worksheet have been designed to cover specification points 10.2 (b & c) of the CIE A-level Biology specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of the development of resistance by evolution through natural selection. The main task of the lesson challenges the students to form a description to explain how this strain of bacteria developed resistance to methicillin, making use of the five key terms emphasised above. Moving forwards, there is a focus on the hospital as the common location for MRSA infections and students will recognise that this opportunistic pathogen can infect through open wounds to cause sepsis and potentially death. Figures from infections and deaths in hospitals in the US are used to increase the relevance and students will learn how a MRSA prevention program in VHA facilities includes screening of surgery patients to try to reduce its impact. The lesson concludes with a discussion about other methods that can be used by hospitals and general practitioners to reduce the impact of MRSA and to try to prevent the development of resistance in other strains.
Topic 4: Exchange and transport (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4: Exchange and transport (Edexcel A-level Biology B)

18 Resources
The wide variety of tasks that are written into the 18 lesson PowerPoints and accompanying resources that are included in this lesson bundle will engage and motivate the students whilst covering the detailed content of topic 4 of the Edexcel A-level Biology B specification (Exchange and transport). The following specification points are covered by these lessons: Understand how the surface area to volume ratio affects the transport of molecules in living organisms Understand why organisms need a mass transport system and specialised gas exchange surfaces as they increase in size The structure of the cell surface membrane Passive transport is brought about by diffusion and facilitated diffusion Passive transport is brought about by osmosis Understand how the properties of molecules affects how they are transported Large molecules are transported in and out of cells by endocytosis and exocytosis The process of active transport The phosphorylation and hydrolysis of ATP Understand how insects, fish and mammals are adapted for gas exchange The structure of the heart, arteries, veins and capillaries The advantages of the double circulatory system The sequence of events of the cardiac cycle The myogenic stimulation of the heart Interpreting ECG traces The role of platelets and plasma proteins in the sequence of events leading to blood clotting The structure of haemoglobin in relation to its role in the transport of respiratory gases The Bohr effect The dissociation curve of haemoglobin The significance of the oxygen affinity of foetal haemoglobin The similarities and differences between the structure and function of haemoglobin and myoglobin The formation and reabsorption of tissue fluid Know that tissue fluid that is not reabsorbed is returned to the blood via the lymph The structure of the xylem and phloem in relation to their role in transport The movement of water by the apoplastic and symplastic pathways The cohesion-tension model Hours and hours has gone into the intricate planning of all of these lessons and the quality can be sampled by downloading the following lessons which have been uploaded for free: Surface area to volume ratio ATP, active transport, endocytosis and exocytosis Structure of the heart, arteries, veins and capillaries Double circulatory system Apoplastic and symplastic pathways
Topic 6: Immunity, infection and forensics (Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 6: Immunity, infection and forensics (Edexcel A-level Biology A)

9 Resources
This lesson bundle contains 9 lesson PowerPoints and their accompanying resources which have been intricately planned to deliver the detailed content of topic 6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and to make links to the 5 previously covered topics. In addition to the detailed content, each lesson contains exam-style questions with mark schemes embedded into the PowerPoint, differentiated tasks, guided discussion points and quick quiz competitions to introduce key terms and values in a fun and memorable way. The following specification points are covered by the lessons in this bundle: DNA can be amplified using the PCR Comparing the structure of bacteria and viruses Understand how Mycobacterium tuberculosis and human immunodeficiency virus infact human cells The non-specific responses of the body to infection The roles of antigens and antibodies in the body’s immune response The differences in the roles of the B and T cells in the body’s immune response Understand how one gene can give rise to more than one protein The development of immunity The major routes that pathogens may take when entering the body The role of barriers in protecting the body from infection The difference between bacteriostatic and bactericidal antibiotics If you would like to sample the quality of the lessons in this bundle, then download the immune response and post-transcriptional changes lessons as these have been uploaded for free
Different types of variation (OCR A-level Biology)
GJHeducationGJHeducation

Different types of variation (OCR A-level Biology)

(0)
This fully-resourced lesson describes the differences between continuous and discontinuous variation and intraspecific and interspecific variation. The engaging PowerPoint and accompanying resources have been designed to cover the first part of point 4.2.2 (f) of the OCR A-level Biology A specification but also acts as a revision tool as a number of activities challenge the students on their knowledge of the genetic code and meiosis from modules 2.1.3 and 2.1.6. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation between members of the same species is due to both genetic and environmental factors and that this is known as intraspecific variation. The next part of the the lesson focuses on these genetic factors, and describes how mutation and the events of meiosis contribute to this variation. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations and deletions, the degenerate and non-overlapping genetic code, crossing over and independent assortment. Another quick quiz round is used to introduce polygenic inheritance and the link is made between this inheritance of genes at a number of loci as an example of continuous variation. In the following task, the students have to determine whether a statement or example represents discontinuous or continuous variation. The final part of the lesson describes a few examples where environmental factors affect phenotype, such as chlorosis in plants.
Primary & secondary responses & antibodies (OCR A-level Biology)
GJHeducationGJHeducation

Primary & secondary responses & antibodies (OCR A-level Biology)

(0)
This lesson describes the differences between the primary and secondary responses and describes how the structure of antibodies is related to function. The PowerPoint and accompanying resources have been designed to cover specification points 4.1.1 (g), (h) and (i) as detailed in the OCR A-level Biology A specification and emphasises the importance of memory cells. As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link the immune responses and antibodies together in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
Homeostasis, Excretion, Neuronal and Hormonal communication (OCR A-level Biology A)
GJHeducationGJHeducation

Homeostasis, Excretion, Neuronal and Hormonal communication (OCR A-level Biology A)

20 Resources
This bundle of 20 lessons covers the majority of the content that’s included in modules 5.1.1 - 5.1.4 of the OCR A-level Biology A specification. All of the lessons are highly detailed and have been planned at length to ensure that they are filled with a wide range of tasks to engage and motivate the students whilst checking on their understanding. The following specification points are covered by the lessons in this bundle: 5.1.1: Communication and homeostasis The communication between cells by cell signalling The principle of homeostasis The physiological and behavioural responses involved in temperature control in endotherms and ectotherms 5.1.2: Excretion as an example of homeostatic control The functions of the mammalian liver The gross structure and histology of the kidney The processes of ultrafiltration and selective reabsorption The control of the water potential of the blood The effects of kidney failure and its potential treatments 5.1.3: Neuronal communication The roles of mammalian sensory receptors in converting stimuli into nerve impulses The structure and functions of sensory, relay and motor neurones The generation and transmission of nerve impulses in mammals The structures and roles of synapses in transmission 5.1.4: Hormonal communication Endocrine communication by hormones The structure and functions of the adrenal glands The structure of the pancreas The regulation of blood glucose concentration The difference between diabetes mellitus type I and II The potential treatments for diabetes mellitus It is estimated that it will take in excess of 2 months of allocated A-level teaching time to cover the detail included in these lessons If you would like to sample the quality of the lessons in this bundle, then download the following lessons as they have been shared for free: The principles of homeostasis Temperature control in ectotherms The functions of the liver The structure of the kidney The generation and transmission of nerve impulses Endocrine communication
OCR A-level Biology Module 3 REVISION (Exchange and Transport)
GJHeducationGJHeducation

OCR A-level Biology Module 3 REVISION (Exchange and Transport)

(0)
A fully resourced revision lesson which uses a range of exam questions (with explained answers), quick tasks and quiz competitions to enable the students to assess their understanding of the topics found within module 3 (Exchange and transport) of the OCR A-level Biology specification. The topics tested within this lesson include: Exchange surfaces Mammalian gaseous exchange system Tissues in the gaseous exchange system Transport in animals Blood vessels Exchange at the capillaries ECG Transport of oxygen Transport in plants Transport tissues Movement of water through plants Transpiration Translocation Student will enjoy the range of tasks and quiz rounds whilst crucially being able to recognise any areas which require further attention
Autoimmune diseases (OCR A-level Biology)
GJHeducationGJHeducation

Autoimmune diseases (OCR A-level Biology)

(0)
This lesson describes why a disease would be deemed to be an autoimmune disease and describes the mechanisms involved in a few examples. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (k) of the OCR A-level Biology A specification, but this lesson can also be used to revise the content of modules 2 and 3 and the previous lessons in 4.1.1 through the range of activities included The lesson begins with a challenge, where the students have to recognise diseases from descriptions and use the first letters of their names to form the term, autoimmune. In doing so, the students will immediately learn that rheumatoid arthritis, ulcerative colitis, type I diabetes mellitus, multiple sclerosis and myasthenia gravis are all examples of autoimmune diseases. The next part of the lesson focuses on the mechanism of these diseases where the immune system cells do not recognise the antigens (self-antigens) on the outside of the healthy cells, and therefore treats them as foreign antigens, resulting in the production of autoantibodies against proteins on these healthy cells and tissues. Key details of the autoimmune diseases stated above and lupus are described and links to previously covered topics as well as to future topics such as the nervous system are made. The students will be challenged by numerous exam-style questions, all of which have mark schemes embedded into the PowerPoint to allow for immediate assessment of progress.