Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1116k+Views

1924k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
OCR GCSE Physics REVISION LESSONS
GJHeducationGJHeducation

OCR GCSE Physics REVISION LESSONS

7 Resources
This bundle of 7 fully-resourced REVISION lessons have been designed to engage students whilst they assess their knowledge of the following topics that are covered in the OCR Gateway A GCSE Physics specification: Topic 1: Matter Topic 2: Forces Topic 3: Electricity Topic 4: Magnetism and magnetic fields Topic 5: Waves in matter Topic 6: Radioactivity Topic 8: Global challenges Each of the lessons have been written to include a range of activities which include differentiated tasks, exam questions (with clearly explained answers) and quiz competitions. Teachers can use these lessons with their students when they reach the end of a topic, in the lead up to the mocks or in the lead up to the actual GCSE exams.
Solids, liquids and gases REVISION (TOPIC 5 Edexcel International GCSE Physics)
GJHeducationGJHeducation

Solids, liquids and gases REVISION (TOPIC 5 Edexcel International GCSE Physics)

(0)
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 5 Solids, liquids and gases) of the Pearson Edexcel International GCSE Physics specification. The engaging PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention. The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus: Using the correct units Converting between the Kelvin and degrees Celsius scales Explain the qualitative relationship between pressure and Kelvin temperature Use the relationship between pressure and Kelvin temperature Know and use the equations for density and pressure Design an experiment to investigate density Know the meaning of the specific heat capacity Use the equation for change in thermal energy Quiz rounds such as “SAY WHAT YOU SEE” and “YOU DO THE MATH” are used to test the students on their knowledge of key terms as well as numerical facts
Edexcel IGCSE Physics TOPICS 5-8 REVISION
GJHeducationGJHeducation

Edexcel IGCSE Physics TOPICS 5-8 REVISION

4 Resources
This bundle of fully-resourced revision lessons will engage and motivate the students whilst they assess their understanding of the content of topics 5 - 8 of the Pearson Edexcel IGCSE Physics specification. The lessons cover the following topics: Topic 5: Solids, liquids and gases Topic 6: Magnetism and electromagnetism Topic 7: Radioactivity and particles Topic 8: Astrophysics The detailed PowerPoint and accompanying resources contain exam-style questions with clear explanations of answers, differentiated tasks, class discussions and quiz competitions. If you would like to see the quality of the lessons, download the topic 7 revision lesson which is shared for free
OCR GCSE Physics PAPER 2 REVISION LESSONS
GJHeducationGJHeducation

OCR GCSE Physics PAPER 2 REVISION LESSONS

3 Resources
This bundle of 3 fully-resourced lessons have been designed to engage and motivate the students whilst they assess their understanding of the content in topics 5, 6 and 8 of the OCR GCSE Physics specification which will be tested in PAPER 2. The detailed PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quick quiz rounds to bring in a competitive edge. The topics covered are: Topic 5: Waves in matter Topic 6: Radioactivity Topic 8: Global challenges Due to the high mathematical content of this specification, the PowerPoints contain step-by-step guides to carrying out calculations. If you want to sample the quality of the lessons, download the topic 8 revision lesson which has been shared for free
Edexcel GCSE Physics Topic 14 REVISION (Particle model)
GJHeducationGJHeducation

Edexcel GCSE Physics Topic 14 REVISION (Particle model)

(0)
This fully-resourced revision lesson challenges the students on their knowledge of the content which is detailed in topic 14 (Particle model) of the Pearson Edexcel GCSE Physics specification. The wide range of activities, which include exam-style questions with clear explanations, will allow them to assess their understanding of the content and to recognise those areas which require further attention. The lesson has been designed to cover as much of the module as possible but the following specification points have been given particular attention: Recall and use the equation to calculate density Explain the differences in density between the different states of matter Describe that mass is conserved during physical changes Explain how heating a system will change the temperature or change a state Define the terms specific heat capacity and specific latent heat and describe the differences between them Use the equations involving specific heat capacity and specific latent heat Explain the qualitative relationship between Kelvin temperature and pressure of a gas Convert between the Kelvin and degrees Celsius scales Explain the effect of changing the volume on the pressure of a fixed mass of gas at a constant temperature Explain why doing work on a gas can increase the temperature Most of the resources are differentiated to allow students of differing abilities to access the work and be challenged and the PowerPoint guides the students through the range of mathematical skills which are tested in this topic
WJEC GCSE Physics Topics 2.7 - 2.9 REVISION
GJHeducationGJHeducation

WJEC GCSE Physics Topics 2.7 - 2.9 REVISION

(0)
This revision lesson is fully-resourced and the engaging PowerPoint and accompanying resources have been designed to challenge students on their understanding of the content detailed in topics 2.7, 2.8 and 2.9 of the WJEC GCSE Physics specification. It was decided that the close links between the types of radiation, half-life and nuclear energy lent themselves to a combined revision resource. The lesson was written to cover as much of the topics as possible but the following points have been given particular attention: The nucleon and proton number and the numbers of neutrons and protons in an atomic nucleus Recognising and representing isotopes Calculating the half-life when given information about the radioactive count The differing penetrating powers of the three types of radiation Background radiation Sources of background radiation and possible reasons for varying levels of radon gas Nuclear decay equations for alpha and beta decay Nuclear fission and nuclear fusion Representing a nuclear fission reaction in an equation The wide range of activities which include exam-style questions with fully-explained answers, differentiated tasks and quick quiz competitions will engage and motivate the students whilst they recognise the areas of these topics which will require their further attention It is estimated that it will take in excess of 2 hours of GCSE teaching time to complete this lesson
Radioactivity REVISION (Edexcel GCSE Physics Topic 6)
GJHeducationGJHeducation

Radioactivity REVISION (Edexcel GCSE Physics Topic 6)

(0)
This is a highly engaging, detailed and fully-resourced revision lesson which has been designed to test the students on their knowledge and understanding of topic 6 (Radioactivity) of the Pearson Edexcel GCSE Physics specification. The PowerPoint and accompanying resources contain a wide range of resources which include exam-style questions with fully-explained answers, differentiated tasks and quick quiz competitions. The students will be motivated by the range of tasks whilst crucially recognising those areas of the specification which require some extra time before the exams The following specification points are covered in this lesson: Describe the structure of atom and recall the typical size Recall the relative masses and charges of the subatomic particles and use the number of protons and electrons to explain why atoms are neutral Describe the structure of the nuclei of an isotope Explain what is meant by background radiation and recall sources Describe methods for measuring and detecting radioactivity Describe the process of beta minus and beta plus decay Write and balance nuclear decay equations Explain the effects on the proton and nucleon number as a result of decay Recall that the unit of radioactivity is Bq Use the concept of half-life to carry out calculations Describe the use of isotopes in PET scanners Describe the differences between nuclear fission and fusion Explain how the fission of U-235 produces two daughter nuclei, two or three neutrons and releases energy Describe the advantages and disadvantages of nuclear energy Explain why nuclear fusion cannot happen at low temperatures and pressures It is estimated that it will take in excess of 2 hours of GCSE teaching to cover the detail of this lesson and it can be used for effective revision at the end of the topic or in the lead up to mock or terminal exams.
Edexcel GCSE Physics REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Physics REVISION LESSONS

11 Resources
This bundle of revision lessons have been designed to enable students to assess their knowledge and understanding of the content detailed in the Pearson Edexcel GCSE Physics specification and ultimately to recognise those areas which need extra attention before an end of topic test or mock or terminal exam. Each lesson is fully-resourced and the engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with clearly explained answers and quick quiz competitions. The following topics are covered by this bundle: Topic 1: Key concepts in Physics Topic 2: Motion and forces Topic 3: Conservation of energy Topic 4: Waves Topic 5: Light and the EM spectrum Topic 6: Radioactivity Topic 7: Astronomy Topic 8: Energy - forces doing work Topic 9: Forces and their effects Topic 10: Electricity and circuits Topic 12: Magnetism and the motor effect Topic 13: Electromagnetic induction Topic 14: Particle model Topic 15: Forces and matter If you want to see the quality of these lessons, download the topics 4 & 5, 7, 10 and 12 & 13 lessons as these have been shared for free.
PAPER 6 FOUNDATION TIER REVISION (AQA GCSE Combined Science)
GJHeducationGJHeducation

PAPER 6 FOUNDATION TIER REVISION (AQA GCSE Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics P5 - P7, that will assessed on PAPER 6. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many specification points as possible but the following sub-topics have been given particular attention: Factors affecting the thinking, braking and stopping distance The 7 recall and apply equations tested in PAPER 6 Using velocity-time graphs to calculate accelerations The motions represented by the different lines on a velocity-time graph Resultant forces Speed and velocity as scalar and vector quantities Converting between units Sound as an example of a longitudinal wave The EM spectrum The meaning of amplitude, wavelength, frequency and period Contact and non-contact forces Attraction and repulsion in magnets Magnetic fields The extension of a spring In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as calculating acceleration and the mathematical elements Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 2/3 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 6 exam.
The Variables (Scientific Skills)
GJHeducationGJHeducation

The Variables (Scientific Skills)

(0)
An informative lesson presentation (30 slides) that ensures that students know the meaning of the independent, dependent and control variables in an investigation and are able to identify them. Students are challenged to use their definitions to spot the independent and dependent variable from an investigation title. Moving forwards, they are shown how they can use tables and graphs to identify them. The rest of the lesson focuses on the control variables and how these have to be controlled to produce valid results This lesson is suitable for students of all ages studying Science as it is such a key skill
Terminal velocity
GJHeducationGJHeducation

Terminal velocity

(0)
A fast-paced lesson where the main focus is the description of motion with reference to the forces involved. The lesson begins by introducing the term, terminal velocity, and then through consideration of examples in the English language, students will understand that this is the top velocity. The example of a skydiver is used and whilst the story of the dive is told, students are challenged to draw a sketch graph to show the different stages of this journey. An exemplary answer is used to visualise how the motion should be described. Related topics like free body diagrams and resultant forces are brought into the answer in an attempt to demonstrate how they are all interlinked. The next task asks the students to try to describe the remaining parts of the graph and they can assess against displayed mark schemes. The final part of the lesson looks at the two terminal velocities that they were during the skydive and explains that the increased surface area after the parachute was opened led to the second velocity being lower. The last task challenges the students to use this knowledge to answer a difficult exam question. It has been differentiated so those students who need extra assistance can still access the learning. This lesson has been written for GCSE students.
Conservation of energy and energy stores
GJHeducationGJHeducation

Conservation of energy and energy stores

(0)
A fully-resourced lesson that includes a detailed and engaging lesson presentation (33 slides) and question worksheets which are diifferentiated. Together these resources guide students through the tricky topic of the conservation of energy by transfers between energy stores which can often be poorly understood. This lesson has been written for GCSE students, but the law can be taught from an earlier age so this would be suitable for higher ability KS3 lessons. The lesson begins by introducing the key term, energy stores. The understanding of this term is critical for this topic and other lessons on energy transfers and therefore some time is taken to ensure that this key points are embedded into the lesson. Students will learn that stores can be calculated due to the fact that they have an equation associated with them and some of these need to be recalled (or applied) at GCSE. Therefore, the first part of the lesson involves two engaging competitions where students are challenged to recall part of an energy store equation or to recognise which energy store an equation is associated with. Students are given the information about the remaining energy stores, such as chemical and electrostatic. Moving forwards, the main part of the lesson explores the law of the conservation of energy and shows students how they need to be able to apply this law to calculation questions. Students are shown how to answer an example question involving the transfer of energy from a gravity store to a kinetic energy store. A lot of important discussion points come up in this calculation, such as resistive forces and the dissipation of energy, so these are given the attention they need. Students are then challenged to apply their knowledge to a calculation question on their own - this task has been differentiated two ways so that all students can access the learning. The final slide of the lesson looks at the different ways that energy can be transferred between stores but those are covered in detail in separate lessons.
Topic C1: Particles (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic C1: Particles (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers the majority of the content in Topic C1 (Particles) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: States of matter Chemical and physical changes Development of the atom Atomic structure Isotopes Ions All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Properties of waves
GJHeducationGJHeducation

Properties of waves

(0)
This is a concise, fast-paced lesson designed to cover the key terminology associated with the waves topic at GCSE and ensure that students are able to recognise and use these terms in context. A number of terms, such a transverse, are known by students but rarely correctly used in written descriptions. Therefore, through a range of tasks and quick competitions, students will meet these terms, learn how to define them and then be asked to apply their knowledge to understanding check questions. This lesson has been written in conjuction with the lesson titled “Wave velocity” and students are challenged to keep an A - Z of key terms during both lessons so they can challenge themselves during revision points.
Wave velocity
GJHeducationGJHeducation

Wave velocity

(0)
Alongside the “properties of waves” lesson, this lesson is also designed to be fast-paced with a focus on the key terminology of the waves topic as well as looking at the different calculations that can be carried out. It is written for GCSE students and challenges their mathematical skills throughout, by asking them to rearrange formulae, convert units and write in standard form. The lesson begins by recalling the definitions for wavelength, frequency and wave velocity and then introducing them to the equation that links them. The velocity of sound waves in three mediums is the initial focus, so that students can recognise that the velocity is higher in liquids and solids than in air. Moving forwards, the concept of an echo is discussed and again a calculation used to show them how distance could be worked out with the added extra of the final division by 2. There are progress checks such as these written throughout the lesson so that students have the opportunity to assess their understanding. A number of quick competitions are also included, in order to maintain engagement whilst check understanding in a different form.
AQA GCSE Combined Science Physics Topics REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Combined Science Physics Topics REVISION LESSONS

7 Resources
This bundle of 7 engaging and motivating lesson presentations and associated worksheets uses a combination of exam questions, quick tasks and quiz competitions to test the students on their knowledge of the Physics units of the AQA Trilogy 9-1 GCSE Combined Science specification. The knowledge of Topics P1 (Energy), P2 (Electricity), P3 (Particle model of matter), P4 (Atomic structure), P5 (Forces) P6 (Waves) and P7 (Magnetism and electromagnetism) can be assessed using these lessons.
Isotopes
GJHeducationGJHeducation

Isotopes

(0)
A quick, concise lesson presentation (15 slides) which together with a question worksheet focuses on ensuring that students can define an isotope and pick these substances out from a selection of substances. The lesson begins by looking at the number of sub-atomic particles in an aluminium atom so that students can recall what is shown by the atomic and mass numbers. This will enable students to calculate the number of protons, neutrons and electrons in three given isotopes and as a result, complete a definition of these substances. The remainder of this short lesson involves 4 application questions where students either have to recognise isotopes from a table or from a diagram and also are asked to write out the formula of an isotope. Ideally this lesson will be taught in conjunction with a lesson on atomic structure.
Efficiency
GJHeducationGJHeducation

Efficiency

(1)
An engaging lesson presentation (28 slides) and accompanying worksheet, which together look at how to calculate efficiency and explores how efficiency can be increased by reducing the ways that energy is transferred to less useful stores. The lesson begins by looking at the key term, dissipated, and ensuring that students understand that energy being dissipated to a thermal energy store is one of the main reasons why efficiency will be low. Moving forwards, students are introduced to the equation to calculate efficiency and shown how to leave the answer as a decimal or percentage. Mathematical skills are challenged when calculating the efficiency as a number of units have to be converted. The rest of the lesson looks at a range of methods that can be used to reduce losses. Students will work with the teacher to understand how lubrication works and then a homework task gets them to explore how insulation in homes reduces heat losses. This lesson has been designed for GCSE students.
Sound waves
GJHeducationGJHeducation

Sound waves

(0)
An engaging lesson presentation that looks at how the amplitude and frequency of a sound wave can change. The lesson uses a range of sounds from recordings and challenges the students to draw the sound waves that would have been produced. In order to understand this topic, it is essential that the key terminology is understood and can be used in the correct context. Therefore, the start of the lesson focuses on wavelength and frequency and then longitudinal and challenges the students to recognise that these could all be related to sound waves. Moving forwards, students will hear a recording and then read a music “critique” that uses the key terminology so that can link the sounds to the change in shape of the waves. The final part of the lesson involves them drawing how the different sound waves would change from the control one. This lesson has been designed for GCSE students.
Topic P4: Waves (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

Topic P4: Waves (Edexcel GCSE Combined Science)

4 Resources
This bundle of 4 lessons covers the majority of the content in Topic P4 (Waves) of the Edexcel GCSE Combined Science specification. The topics covered within these lessons include: Using the terms frequency and wavelength Using the terms amplitude, period and velocity Longitudinal and transverse waves Calculating wave speed Refraction of waves All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.