A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This detailed and engaging lesson has been written to challenge the students on their recall and application of the 22 equations which they have to know for the AQA GCSE Physics exams. The lesson is designed to not only check that they know these equations but also on their ability to rearrange formulae when required and to convert between units. The main task of the lesson consists of 13 exam-style questions which challenge 12 of these recall equations and then an engaging quiz competition and class discussions are used to identify the other 10. Students are guided throughout the lesson in the use of the mathematical skills and are shown examples to aid their progress.
This lesson has been designed to tie in with the other 12 uploaded revision lessons which cover the content of the topics on the Edexcel GCSE Physics specification
This fully-resourced revision lesson has been designed to motivate and engage the students whilst they assess their understanding of the content detailed in topics 12 & 13 (Magnetism and the motor effect and electromagnetic induction) of the Pearson Edexcel GCSE Physics specification. These two topics tend to be poorly understood so time has been taken to plan activities that challenge the key details of the specification and provide clear explanations so students can progress.
The PowerPoint and accompanying resources were written to cover as much of the content in both topics as possible, but the following points have received particular attention:
Attraction and repulsion between unlike and like poles respectively
Electromagnetic induction
The application of Fleming’s left-hand rule
Application of the equation involving magnetic flux density
Microphones and loudspeakers and the opposite conversions of a changing current to sound waves
The ability of transformers to change the size of alternating voltage
The advantage of power transmission in high voltage cables
The application of the transformer equations involving potential difference and turns and for transformers with 100% efficiency
Due to the heavy mathematical element of the specification, the required skills are tested throughout the lesson and guidance is given to allow differing abilities to access the work
This is a fully-resourced revision lesson which covers the content detailed in topic 10 (electricity and circuits) of the Pearson Edexcel GCSE Physics specification. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and ultimately recognise those areas which need further consideration.
The following specification points have been given particular attention in this lesson:
The electrical symbols that represent the electrical components
Describe the differences between series and parallel circuits
Recall that a voltmeter is connected in parallel
One volt is equal to one joule per coulomb
Recall and use the equations that calculate energy transferred, charge, potential difference, power and electrical power
Recall that an ammeter is connected in series
Calculate the currents, potential differences and resistances in series and parallel circuits
Explain how current varies with potential difference in resistors
Know the functions of the wires in a plug and the safety features
This lesson has been designed to fall in line with the heavy mathematical content of the Physics specification with a number of calculation tasks and students are guided through the range of skills that they will have to employ
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics P1 - P4, that will assessed on PAPER 5. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to cover as many specification points as possible but the following sub-topics have received particular attention:
The size of an atom
The differences between isotopes
Using the half-life in calculations
The 13 recall and apply equations in topics P1 - P4
Electrical circuit symbols
Measuring current using an ammeter
Current and potential difference in series and parallel circuits
Changes in resistance in resistors
Mains domestic supply
Kinetic, internal and potential energy in a system
Calculating specific heat capacity and latent heat
Physical and chemical changes
Conservation of energy
Calculating gravitational potential and kinetic energy
Penetrating abilities of the different types of radiation
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as circuit calculations and rearranging formulae and converting between units.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 or 4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 5 exam.
An engaging lesson presentation (28 slides) and accompanying worksheet, which together look at how to calculate efficiency and explores how efficiency can be increased by reducing the ways that energy is transferred to less useful stores. The lesson begins by looking at the key term, dissipated, and ensuring that students understand that energy being dissipated to a thermal energy store is one of the main reasons why efficiency will be low. Moving forwards, students are introduced to the equation to calculate efficiency and shown how to leave the answer as a decimal or percentage. Mathematical skills are challenged when calculating the efficiency as a number of units have to be converted. The rest of the lesson looks at a range of methods that can be used to reduce losses. Students will work with the teacher to understand how lubrication works and then a homework task gets them to explore how insulation in homes reduces heat losses.
This lesson has been designed for GCSE students.
This bundle of 11 lessons covers a lot of the content in Topic P4 (Waves and radioactivity) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Waves and their properties
Wave velocity
Reflection and Refraction
EM waves
Uses of EM waves
Isotopes
Radiation properties
Decay equations
Half-life
Background radiation
Dangers of radioactivity
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A highly engaging and information lesson presentation (46 slides) which guides students through the steps needed to construct an accurate distance-time graph and then teaches them how to interpret the motions that are shown by the different lines. The lesson challenges the students to work out the type of graph that should be used to present the data and to suggest which factor from the blank table should go on the x-axis. Using the results that they obtain, a step-by-step guide is used to walk students through constructing the graph. This includes deciding on scales to ensure they are even and make the most of the available paper. Student will see the four key terms of motion associated with these graphs (acceleration, deceleration, constant speed and stationary) and will be able to use their graph to work out which lines go with which motion. Moving forwards, students will be shown how to calculate speed from the graph. There are progress checks throughout the lesson so that students can assess their understanding of the topic.
This lesson has been designed for GCSE students but is perfectly suitable for KS3 students too.
An engaging lesson presentation (57 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module P6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification.
The topics that are tested within the lesson include:
Everyday motion
Reaction time and thinking distance
Braking distance and stopping distance
Energy sources
The National Grid
Mains electricity
Students will be engaged through the numerous activities including quiz rounds like “Can you go the DISTANCE” whilst crucially being able to recognise those areas which need further attention
This bundle of 9 revision lessons uses a range of exam questions (with explained answers), differentiated tasks and quiz competitions to engage the students whilst challenging their knowledge of the content in the Pearson Edexcel IGCSE Physics specification:
All 8 topics are covered by the lessons in this bundle:
Topic 1: Forces and motion
Topic 2: Electricity
Topic 3: Waves
Topic 4: Energy resources and energy transfers
Topic 5: Solids, liquids and gases
Topic 6: Magnetism and electromagnetism
Topic 7: Radioactivity and particles
Topic 8: Astrophysics
There is also an additional lesson which challenges the students on their knowledge of the 21 Physics equations
If you want to see the quality of the lessons, download the topic 1 and 7 and equations revision lessons as these are free
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the sub-topics found within Topic P2 (Motion and forces) of the Edexcel GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Recall and use the equations to calculate average speed
Recall and use the equation to calculate acceleration
Use the equations of motion
Analyse velocity-time graphs to be able to compare and calculate accelerations and calculate the distance travelled from the area under the graph
Recall and use Newton’s second law involving force, mass and acceleration
Describe the relationship between the weight of a body and gravitational field strength
Define momentum, recall and use the equation
Describe examples of momentum in collisions
Recall that stopping distance is made up of the sum of the thinking distance and braking distance
Explain the factors that affect stopping distance
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is a fully-resourced lesson that guides students through the range of calculations involved in calculating speeds in everyday situations. This lesson includes an informative lesson presentation (27 slides) and a question worksheet which has been differentiated two ways.
The lesson begins by showing the students a speed camera and challenging them to recall the equation that would be used to calculate the speed as well as asking them to explain where the distance and the time values would come from. This lesson has a high mathematical element to it, to run in line with the questions that were seen in the latest exams this summer. Students will be expected to convert between units and rearrange formula. In this example, students are challenged to convert between m/s and mph in order to determine which of three drivers will receive a speeding ticket for exceeding the limit. This task has been differentiated so that students who find the conversions difficult are given some assistance so they can still access the learning. Moving forwards, students will see how a sensor on a tyre of a bicycle can also be used to calculate the speed by working out the circumference of the tyre to determine the distance. The final part of the lesson gets students to convert between m/s and mph and the other way to find out some typical speeds of everyday motion such as walking, running or a train moving.
This lesson has been written for GCSE aged students but could be used with younger students of high ability who need an extra challenge in the calculating speed topic.
An engaging lesson presentation (55 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module P3 (Electricity and Magnetism) of the OCR Gateway A GCSE Combined Science specification.
The topics that are tested within the lesson include:
Static electricity
Current and potential difference
Series and parallel circuits
Magnets and magnetic fields
Motors
Students will be engaged through the numerous activities including quiz rounds like “Take the HOTSEAT” whilst crucially being able to recognise those areas which need further attention
All of the lessons in this bundle are fully-resourced and have been designed to challenge the students on their knowledge of the topics which can be assessed in PAPER 2 of the Pearson Edexcel GCSE Physics specification.
The content in the following topics is covered by these lessons:
Topic 1: Key concepts in Physics
Topic 8: Energy - forces doing work
Topic 9: Forces and their effects
Topic 10: Electricity and circuits
Topic 12: Magnetism and the motor effect
Topic 13: Electromagnetic induction
Topic 14: Particle model
Topic 15: Forces and matter
The PowerPoints and accompanying resources contain a wide range of activities which include exam-style questions with clear explanations of the answer, differentiated tasks and quiz competitions. There is also a big emphasis on the mathematical element of the specification and students are guided through the use of a range of skills which include the conversion of units and the rearrange of formulae to change the subject.
An engaging lesson presentation that runs the lesson in a quiz format, with numerous rounds, in order to introduce the students to the different stages of the life cycle of a star. The lesson begins by introducing students to the first three stages (nebula, protostar, main sequence) which all stars go through regardless of their mass. Key details about each stage are discussed and considered. Moving forwards, this lesson ensures that students understand that the stages after the main sequence are dependent upon the mass of the star. Key links are made to associated topics such as nuclear fusion.
This lesson has been designed for GCSE students but could be used with KS3 students if they are doing a project on space and stars
This bundle of 8 lessons covers a lot of the content in Topic P6 (Radioactivity) of the OCR Gateway A GCSE Physics specification. The topics covered within these lessons include:
Atoms and Isotopes
The properties of alpha, beta and gamma radiation
Nuclear equations
Half-life
Background radiation
Irradiation and contamination
Nuclear fission
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is a fully-resourced lesson that explores the meaning of irradiation and contamination and challenges the students to make links to the different types of radiation in order to state which type of radiation is most dangerous outside of the body and inside the body. This lesson includes an engaging lesson presentation (28 slides) and a differentiated worksheet which gives assistance to those students who find the task of writing the letter difficult.
The lesson has been written to include real life examples to try to make the subject matter more relevant to the students. Therefore, whilst meeting the term contamination, they will briefly read about the incident with Alexander Litvinenko in 2006 to understand how the radiation entered the body. Moving forwards, students will learn that there are examples of consensual contamination such as the injection of an isotope to act as a tracer. At this point of the lesson, links are made to the topic of decay and half-lives and students are challenged to pick an appropriate isotope based on the half-life and then to write a letter to the patient explaining why they made their choice. The remainder of the lesson challenges students to decide which type or types of radiation are most dangerous when an individual is irradiated or contaminated and to explain their answers. This type of progress check can be found throughout the lesson along with a number of quick competitions which act to maintain engagement as well as introduce new terms.
This lesson has been written for GCSE aged students
This bundle of 3 lessons covers a lot of the content in Topic P9 (Forces and their effects) of the Edexcel GCSE Physics specification. The topics covered within these lessons include:
Objects interacting due to forces
Vector and scalar quantities
Resolution of forces
Free body diagrams
Turning forces
The principle of moments
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 12 lessons covers the majority of the content in Topic C3 (Physical chemistry) of the Edexcel iGCSE Chemistry specification. The sub-topics and specification points covered within these lessons include:
[a] Energetics
Know that chemical reactions can be endothermic or exothermic reactions
Calculate the heat energy change using the expression involving specific heat capacity
Draw energy level diagrams to represent endothermic and exothermic reactions
Use bond energies to calculate the enthalpy change
[b] Rates of reaction
Describe experiments to investigate the effect of changing surface area, concentration, temperature and the addition of a catalyst on the rate of reaction
Describe and explain the effects of changing surface area, concentration and temperature on a rate of reaction with reference to the collision theory
Know the definition of a catalyst and understand how it reduces the activation energy of a chemical reaction
Draw and explain reaction profile diagrams
[c] Reversible reactions and equilibria
Know that some reactions are reversible
Know the characteristics of a reaction at dynamic equilibrium
Know the effect of changing either the temperature of pressure on the position of the equilibrium
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 18 lessons uses a range of exam questions, tasks, activities and quiz competitions to engage students whilst they assess their knowledge of the topics in modules B1-6, C1-6 and P1-6 of the OCR Gateway A GCSE Combined Science specification. All of the lessons are fully resourced to take away that worry about how to get students to effectively revise in the lead up to assessments.