Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
WJEC GCSE Physics UNIT 2 REVISION LESSONS
GJHeducationGJHeducation

WJEC GCSE Physics UNIT 2 REVISION LESSONS

4 Resources
All of the lessons in this bundle are fully-resourced and have been designed to contain a wide range of activities that will challenge the students on their knowledge and understanding of the content of UNIT 2 of the WJEC GCSE Physics specification. The engaging PowerPoints and accompanying resources cover the following topics: Topic 2.1: Distance, speed and acceleration Topic 2.3: Work and energy Topic 2.4: Further motion concepts Topic 2.7: Types of radiation Topic 2.8: Half-life Topic 2.9: Nuclear decay and nuclear energy To fall in line with the heavy mathematical content of this course, the lessons challenge a range of skills including rearranging formulae, converting units, using standard form and significant figures and percentage change If you would like to see the quality of the lessons, download the topic 2.3 lesson which has been shared for free
Distance-time graphs
GJHeducationGJHeducation

Distance-time graphs

(1)
A highly engaging and information lesson presentation (46 slides) which guides students through the steps needed to construct an accurate distance-time graph and then teaches them how to interpret the motions that are shown by the different lines. The lesson challenges the students to work out the type of graph that should be used to present the data and to suggest which factor from the blank table should go on the x-axis. Using the results that they obtain, a step-by-step guide is used to walk students through constructing the graph. This includes deciding on scales to ensure they are even and make the most of the available paper. Student will see the four key terms of motion associated with these graphs (acceleration, deceleration, constant speed and stationary) and will be able to use their graph to work out which lines go with which motion. Moving forwards, students will be shown how to calculate speed from the graph. There are progress checks throughout the lesson so that students can assess their understanding of the topic. This lesson has been designed for GCSE students but is perfectly suitable for KS3 students too.
OCR Gateway A GCSE Combined Science Physics Modules REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science Physics Modules REVISION

6 Resources
This bundle of 6 engaging and motivating lesson presentations and associated worksheets uses a combination of exam questions, quick tasks and quiz competitions to test the students on their knowledge of the Physics units of the OCR Gateway A GCSE Combined Science specification. The knowledge of Modules P1 (Matter), P2 (Forces), P3 (Electricity and magnetism), P4 (Waves and radioactivity) P5 (Energy) and P6 (Global challenges) can be assessed using these lessons.
AQA Unit P5 Forces REVISION (Combined Science)
GJHeducationGJHeducation

AQA Unit P5 Forces REVISION (Combined Science)

(0)
An engaging lesson presentation (84 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit P5 (Forces) of the AQA GCSE Combined Science specification (specification point P6.5). The topics that are tested within the lesson include: Gravity Speed Velocity Acceleration Newton’s laws Forces and braking Momentum Conservation of momentum Students will be engaged through the numerous activities including quiz rounds like “Can you go the DISTANCE” whilst crucially being able to recognise those areas which need further attention
Electromagnetic Waves
GJHeducationGJHeducation

Electromagnetic Waves

(0)
A fully-resourced lesson that looks at the 7 electromagnetic waves, their differences, similarities and uses. The lesson includes an engaging presentation (54 slides) and associated worksheets. The lesson begins with a number of engaging activities to get the students to find out the names of the 7 waves in the spectrum. Students will be challenged to use their knowledge of the properties of waves to explain why they have been arranged in this particular order. Moving forwards, some time is taken to ensure that students recognise the similarities of the waves. The rest of the lesson focuses on the uses of the waves and a homework is also set to get students to increase the number of uses that they know for each wave. There are regular progress checks throughout the lesson so that students can assess their understanding at critical points. This lesson has primarily been designed for GCSE students (14 - 16 year olds in the UK) but could be used with students at KS3 who are doing a project
Work done and POWER
GJHeducationGJHeducation

Work done and POWER

(0)
A fast paced lesson which focuses on the equation for work done and using this in calculations. The lesson includes a student-led lesson presentation and a question worksheet which together explore the different problems that students can encounter when attempting these questions and therefore acts to eliminate any errors. There is a big mathematical element to the lesson which includes the need to rearrange formula, understand standard form and to convert between units as this is a common task in the latest exams. Students will learn that some questions involve the use of two equations as they are needed to move from a mass to a force (weight) before applying the work done equation. The last part of the lesson looks at how work done is involved in the calculation for power. This lesson has been designed for GCSE students.
Background radiation
GJHeducationGJHeducation

Background radiation

(0)
An engaging lesson which uses a range of tasks to ensure that students understand the meaning of the term, background radiation, and are able to name a number of sources of this type of radiation. The start of the lesson focuses on the definition of background radiation and the idea that is all around us is revisited again a number of times during the lesson. Through a range of activities and discussion points, students will meet the different sources as well as the % that they each contribute. It seemed appropriate to challenge some mathematical and scientific skills at this point so students will represent the data in a pie chart form. Related topics are discussed such as Chernobyl. Progress checks are written into the lesson at regular intervals so the students can constantly assess their understanding. This lesson is designed for GCSE students.
Topic P9: Forces and their effects (Edexcel GCSE Physics)
GJHeducationGJHeducation

Topic P9: Forces and their effects (Edexcel GCSE Physics)

3 Resources
This bundle of 3 lessons covers a lot of the content in Topic P9 (Forces and their effects) of the Edexcel GCSE Physics specification. The topics covered within these lessons include: Objects interacting due to forces Vector and scalar quantities Resolution of forces Free body diagrams Turning forces The principle of moments All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P8: Atomic Physics (Cambridge iGCSE Science Double Award)
GJHeducationGJHeducation

Topic P8: Atomic Physics (Cambridge iGCSE Science Double Award)

7 Resources
This bundle of 7 lessons covers the majority of the content in Topic P8 (Atomic Physics) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include: The composition of the nucleus Isotopes Identify alpha, beta and gamma radiation by their properties An understanding of background radiation The meaning of radioactive decay Word and nuclide notation in decay equations Half-life The effects of ionising radiation on living things All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers the majority of the content in Topic P6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Everyday motion Explain methods of measuring human reaction times and recall typical results Explain the factors which affect stopping distance The main energy sources available on Earth The differences between renewable and non-renewable energy sources The use of transformers to increase and decrease potential difference The National grid and mains electricity The differences in function of the wires in a three core cable All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Electricity and circuits REVISION (GCSE)
GJHeducationGJHeducation

Electricity and circuits REVISION (GCSE)

(0)
This fully-resourced revision lesson has been written to cover the major details of the electricity and circuits topic that can be assessed in the GCSE Physics and Combined Science (HT) exams. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and to ultimately recognise those areas which need further consideration. The following points are covered in this revision lesson: The electrical symbols that represent the electrical components Describe the differences between series and parallel circuits Recall that a voltmeter is connected in parallel One volt is equal to one joule per coulomb Recall and use the equations that calculate energy transferred, charge, potential difference, power and electrical power Recall that an ammeter is connected in series Calculate the currents, potential differences and resistances in series and parallel circuits Explain how current varies with potential difference in resistors Know the functions of the wires in a plug and the safety features The main task of the lesson, which challenges the students to calculate the currents, potential differences and resistances in series and parallel circuits, is differentiated to allow students of differing abilities to access the work
WJEC GCSE Physics Topic 2.4 REVISION (Further motion concepts)
GJHeducationGJHeducation

WJEC GCSE Physics Topic 2.4 REVISION (Further motion concepts)

(0)
This revision lesson is fully-resourced and differentiated to allow students of differing abilities to assess their understanding of topic 2.4 (Further motion concepts) of the WJEC GCSE Physics specification. The engaging and detailed PowerPoint and accompanying resources contain exam-style questions, quick tasks, discussion points and a quiz competition which check on the following specification points: The qualitative relationship between mass and velocity in the calculation of momentum Application of the law of the conservation of momentum to perform calculations involving collisions Applying the kinetic energy equation to compare the size of this energy store before and after an interaction Newton’s second law in the form force = change in momentum over time Using equations to model the motion of an object The principle of moments To fall in line with the specification, there is a big emphasis on mathematical skills in this lesson and students are given guidance and assistance to ensure that they can access the work
Topic P3: Conservation of energy (Edexcel GCSE Combined Science & GCSE Physics)
GJHeducationGJHeducation

Topic P3: Conservation of energy (Edexcel GCSE Combined Science & GCSE Physics)

5 Resources
This bundle of 5 lessons covers the majority of the content in Topic P3 (Conservation of energy) of the Edexcel GCSE Combined Science & GCSE Physics specifications. The topics covered within these lessons include: Calculating change in gravitational potential energy Kinetic energy Conservation of energy Reducing unwanted energy transfer Efficiency Increasing efficiency Energy sources All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

AQA GCSE Combined Science REVISION

11 Resources
Each of the 11 revision lessons included in this bundle are detailed and engaging and provide the students with multiple opportunities to check their understanding of the following topics in the AQA Combined Science course: Random and systematic errors Independent, dependent and control variables Pathogens Viral, bacterial, fungal and protist diseases The movement of water molecules by osmosis Calculating acceleration from a velocity-time graph Using resultant force and F=ma Reactions of acids with metals Redox reactions and the loss and gain of electrons The properties of waves Refraction Control systems in homeostasis The regulation of blood glucose concentration Properties of ionising radiation Detecting radiation based on penetrating power Half-life Decay equations Classification system using kingdom, phylum, class, order, family, genus and species The binomial naming system The three-domain system Chromosomes The 3 stages of the cell cycle including mitosis The formation of gametes by meiosis Mole calculations Concentration of solutions Protons, electrons, and neutrons in atoms, ions and isotopes Bond energy calculations The rate of photosynthesis and limiting factors These resources can be used in the final weeks and months before the GCSE examinations or for revision before end of topic tests or mocks. If you want to view the quality of these resources, download the control of blood glucose, reactions of acids with metals, mitosis and meiosis and radiation resources as these have been shared for free.
Radioactivity and particles REVISION (Edexcel IGCSE Physics Topic 7)
GJHeducationGJHeducation

Radioactivity and particles REVISION (Edexcel IGCSE Physics Topic 7)

(3)
This is a detailed and engaging REVISION lesson which is fully-resourced and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Radioactivity and particles) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019. The specification points that are covered in this revision lesson include: Use the following units: becquerel (Bq), centimetre (cm), hour (h), minute (min) and second (s) Describe the structure of an atom in terms of protons, neutrons and electrons and use symbols to represent isotopes Know the terms atomic (proton) number, mass (nucleon) number and isotope Know that alpha (α) particles, beta (β−) particles, and gamma (γ) rays are ionising radiations emitted from unstable nuclei in a random process Describe the nature of alpha (α) particles, beta (β−) particles, and gamma (γ) rays, and recall that they may be distinguished in terms of penetrating power and ability to ionise Describe the effects on the atomic and mass numbers of a nucleus of the emission of each types of radiation Understand how to balance nuclear equations in terms of mass and charge Know that the activity of a radioactive source decreases over a period of time and is measured in becquerels Know the definition of the term half-life and understand that it is different for different radioactive isotopes Use the concept of the half-life to carry out simple calculations on activity Know that nuclear reactions, including fission, fusion and radioactive decay, can be a source of energy Understand how a nucleus of U-235 can be split (the process of fission) by collision with a neutron, and that this process releases energy as kinetic energy of the fission products Know that the fission of U-235 produces two radioactive daughter nuclei and a small number of neutrons Describe how a chain reaction can be set up if the neutrons produced by one fission strike other U-235 nuclei Explain the difference between nuclear fusion and nuclear fission Describe nuclear fusion as the creation of larger nuclei resulting in a loss of mass from smaller nuclei, accompanied by a release of energy Know that fusion is the energy source for stars The students will thoroughly enjoy the range of activities, which include quiz competitions such as “It’s as easy as ABG” where they have to compete to be the 1st to form a word by using clues about the different types of radiation whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams
Moments (Turning forces)
GJHeducationGJHeducation

Moments (Turning forces)

(6)
A fully-resourced lesson which looks at the calculation of a turning force and uses this to apply the principle of moments. The lesson includes an engaging and informative lesson presentation (24 slides) and a series of worksheets, some of which contain questions which have been differentiated. The lesson begins by getting the students to read through the scene from Friends which involves the famous “PIVOT”. This word has been removed from the scene and so students have to work out what it is and how it could relate to a Physics lesson. The rest of the lesson focuses on the range of calculation questions that students can face, which get progressively more difficult. At each stage of the lesson, students are guided through examples and given hints on points to be conscious of so that any silly mistakes can be eradicated. The principle of moments question worksheet has been differentiated two ways so that those students who need extra assistance are still able to access the learning. A homework question is also included in the lesson. This lesson has been written for GCSE students but should higher ability KS3 students want to really test themselves, it could be used with them.
Diodes
GJHeducationGJHeducation

Diodes

(0)
A concise lesson presentation that focuses on the key details that students need to know about diodes for the GCSE examinations. The lesson begins by introducing the idea that diodes only allow current to flow in one direction. Moving forwards, time is taken to go through the potential difference vs current graph in 3 parts so that students can explain how the diode functions. Moving forwards, students will meet a LED and then in the style commonly associated with the 6 mark exam question, they are challenged to use data in a table to compare the effectiveness of a LED against other light bulbs.
OCR Gateway A GCSE Physics Topic 8 REVISION (Global challenges)
GJHeducationGJHeducation

OCR Gateway A GCSE Physics Topic 8 REVISION (Global challenges)

(0)
This is a detailed REVISION lesson that contains an engaging powerpoint (99 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic 8 (Global challenges) of the OCR GCSE Physics A specification. The following specification points are covered in this lesson: Explain the factors which affect the distance required for road transport vehicles to come to rest in emergencies and the implications for safety Estimate how the distances required for road vehicles to stop in an emergency, varies over a range of typical speeds Estimate the forces involved in typical situations on a public road Describe the main energy sources available for use on Earth, compare the ways in which they are used and distinguish between renewable and non-renewable sources Explain patterns and trends in the use of energy resources Recall that step-up and step-down transformers are used to change the potential difference as power is transferred from power stations Link the potential differences and numbers of turns of a transformer to the power transfer involved; relate this to the advantages of power transmission at high voltages Recall that the domestic supply in the UK is a.c. at 50Hz and about 230 volts Recall the differences in function between the live, neutral and earth mains wires, and the potential differences between these wires Explain the red-shift of light as seen from galaxies which are receding (qualitative only). The change with distance of each galaxy’s speed is evidence of an expanding universe Explain how red shift and other evidence can be linked to the Big-Bang model Recall that our Sun was formed from dust and gas drawn together by gravity and explain how this caused fusion reactions, leading to equilibrium between gravitational collapse and expansion due to the energy released during fusion Recall the main features of our solar system, including the similarities and distinctions between the planets and their moons Due to the size of this revision lesson, it is likely to be used over the course of a number of lessons and can also be used throughout the duration of the GCSE course, as an end of topic revision lesson or as lessons in the lead up to mocks or the actual GCSE exams
MOMENTUM
GJHeducationGJHeducation

MOMENTUM

(3)
A concise lesson presentation (16 slides) and associated worksheet that looks at the motion topic of Momentum and guides students through how to answer these questions. The lesson begins by giving the students the units for momentum and challenging them to use this to work out the other factors involved in the equation. Moving forwards, a number of progress checks are used to see whether the students can apply their new found knowledge. All progress checks have displayed mark schemes. This lesson has been designed for GCSE students and ties in nicely with my other resources, "Conservation of momentum" and "Changes in momentum"
Edexcel GCSE Combined Science Topic P8 REVISION (Energy - forces doing work)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Topic P8 REVISION (Energy - forces doing work)

(2)
This REVISION lesson contains an engaging and detailed powerpoint (40 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic P8 (Energy - forces doing work) of the Edexcel GCSE Combined Science specification. The following specification points are covered in this lesson: Identify the different ways that the energy of a system can be changed Describe how to measure the work done by a force and understand that energy transferred (joule, J) is equal to work done (joule, J) Recall and use the equation to calculate work done Describe and calculate the changes in energy involved when a system is changed by work done by forces Recall and use the equation to calculate the change in gravitational potential energy Recall and use the equation to calculate the amounts of energy associated with a moving object Explain, using examples, how in all system changes energy is dissipated so that it is stored in less useful ways Explain that mechanical processes become wasteful when they cause a rise in temperature so dissipating energy in heating the surroundings Recall and use the equation to calculate efficiency This lesson is suitable for use throughout the duration of the GCSE course, as an end of topic revision lesson or as a lesson in the lead up to mocks or the actual GCSE exams