Hero image

GJHeducation's Shop

Average Rating4.51
(based on 918 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1211k+Views

2018k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)
GJHeducationGJHeducation

Topic B5: Health, disease and development of medicines (Edexcel GCSE Biology)

10 Resources
This bundle of 10 lessons covers a lot of the content in Topic B5 (Health, disease and development of medicines) of the Edexcel GCSE Biology specification. The topics covered within these lessons include: Health The difference between communicable and non-communicable diseases Pathogens Common infections The spread of diseases and the prevention The spread of STIs Plant defences Identification of plant diseases The physical and chemical defences of the human body The use of antibiotics Developing new medicines Monoclonal antibodies Non-communicable diseases Treating cardiovascular disease All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Xylem and Phloem (GCSE)
GJHeducationGJHeducation

Xylem and Phloem (GCSE)

(1)
This is a fully-resourced lesson that looks at the functional and structural differences between the transport tissues in a plant, the xylem and phloem. The lesson includes an engaging lesson presentation (41 slides), which includes numerous student-led tasks, progress checks and quick competitions and two question worksheets, one of which is a differentiated version to enable those students who are finding this topic difficult to still be able to access the learning. The lesson begins with the introduction of the two tissues as well as a brief introduction to the substances which they each carry. The next part of the lesson focuses on the xylem cells and the resulting xylem vessel, and key terms such as lignin are brought into the lesson so that students can understand how these cells are waterproofed, which causes them to decay and form hollow tubes. Having met a lot of information, students are challenged to act like an examiner to form a table based question to compare the xylem against the phloem where they have to come up with features which could be compared against. This table will form the backbone of the lesson and students will use it later in the lesson when they have to write summary passages about each of the tissues. Moving forwards, a quick competition is used to enable the students to meet the names of the cells that form the phloem tissue, the sieve tube elements and the companion cells. Students will see how they are involved in the functioning of the phloem and questions are posed which relate to other topics such as the involvement of mitochondria wherever active transport occurs. Progress checks like this are found at regular intervals throughout the lesson so that students can constantly assess their understanding. This lesson has been designed for GCSE students. If you are looking to teach about these tissues but to a higher standard, you could use my uploaded alternative called Xylem and Phloem (A-level)
The control of HEART RATE (OCR A-level Biology)
GJHeducationGJHeducation

The control of HEART RATE (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the effects of nervous mechanisms on the heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the part of point 5.1.5 (k) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the control of the heart rate by the cardiovascular centre in the medulla oblongata This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
Maths in Science
GJHeducationGJHeducation

Maths in Science

4 Resources
This bundle of 4 lesson presentations and associated resources cover a lot of the mathematical skills that can be tested in Science. Since the move to the new GCSE specifications, the mathematical element has increased significantly and these lessons act to guide students through these skills. Students are shown how to convert between units, rearrange to change the subject of the formula and to use significant figures and standard form.
Contact and non-contact FORCES
GJHeducationGJHeducation

Contact and non-contact FORCES

(0)
An engaging and informative lesson presentation (49 slides) looks at the differences between contact and non-contact forces and focuses on enabling students to describe and recognise them. This lesson has been written for GCSE students but could be used in higher ability KS3 lessons with students who are looking to progress their knowledge. The lesson begins by introducing the fact that forces can be grouped into these two categories and initial definitions are used to ease the students into the lesson. To follow on from this a competition called “FORCE it together” is used. This engaging game challenges the students to spot the name of a force which is in anagram form and then once it has been identified, they have to determine whether it would be a contact or non-contact force. As each force is met, key details are given and discussed. More time is given to areas which can cause problems for students, such as the use of weight and gravity force and whether they are actually different. Moving forwards, a rugby tackle is used to show the numerous forces that interact in everyday situations, before students are challenged to identify more forces in sports of their choice. Students will recall/learn that force is a vector quantity and therefore is represented in diagrams using arrows. Once again, this lesson focuses on showing them how these arrows can be used differently with the different types of forces. Students are briefly introduced to the idea of a free body diagram and an understanding check is used to see whether they can identify friction, gravity force and normal contact force from the arrows. Progress checks like this are written into the lesson at regular intervals, in a range of formats, so that students are constantly assessing their understanding. The final part of the lesson is one more quick competition where students have to use their knowledge of the forces to form words.
Module 6.1.2: Patterns of inheritance (OCR A-Level Biology A)
GJHeducationGJHeducation

Module 6.1.2: Patterns of inheritance (OCR A-Level Biology A)

13 Resources
Each of the 13 lessons included in this bundle are fully-resourced and have been designed to cover the content as detailed in module 6.1.2 (Patterns of inheritance) of the OCR A-Level Biology A specification. The specification points that are covered within these lessons include: The contribution of environmental and genetic factors to phenotypic variation How sexual reproduction can lead to genetic variation within a species Genetic diagrams to show patterns of inheritance The use of phenotypic ratios to identify autosomal and sex linkage and epistasis Using the chi-squared test The factors that can affect the evolution of a species The use of the Hardy-Weinberg principle to calculate allele frequencies The role of isolating mechanisms in the evolution of a new species The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this module and earlier modules.
Translation (OCR A-level Biology)
GJHeducationGJHeducation

Translation (OCR A-level Biology)

(0)
This detailed lesson describes the role of the mRNA, tRNA, rRNA and amino acids during the second stage of protein synthesis - translation. Both the PowerPoint and accompanying resources have been designed to cover the second part of point 2.1.3 (g) of the OCR A-level Biology A specification and continually links back to the previous lessons in this module on the structure of DNA and RNA and the genetic code Translation is a topic which is often poorly understood and so this lesson has been written to enable the students to understand how to answer the different types of questions by knowing and including the key details of the structures involved. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules, the genetic code and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage that consists of this considerable detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up through the lesson, their confidence to answer this type should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have absorbed to answer some questions which involve the genetic code and the mRNA codon table
Reversible reactions
GJHeducationGJHeducation

Reversible reactions

(0)
This lesson has been written for GCSE students, with the main focus being to introduce reversible reactions, show them how to represent them in both word and symbol equations, and to look at some well-known examples. Related topics such as the position of the equilibrium and endothermic and exothermic reactions are briefly mentioned so that students can recognise the potential crossover between topics. Some time is taken during the lesson to challenge the students to write a balanced symbol equation having been given a description of a reversible reaction. This task is differentiated with an assistance sheet so that all are able to access the learning. There are a number of these progress checks in this short lesson so that students can assess their understanding on a regular basis. Students will learn that the reaction in one direction will be exothermic and why this matters in terms of temperature and the equilibrium position. Increasing pressure and the number of moles is also discussed and an answer explained.
Topic B3.3: Maintaining internal environments (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B3.3: Maintaining internal environments (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers all of the content in the sub-topic B3.3 (Maintaining internal environments) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: The importance of maintaining a constant internal environment in response to internal and external change Explain how insulin controls blood sugar levels Explain how glucagon controls blood sugar levels Compare type I and II diabetes All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic B6.1: Monitoring and maintaining the environment (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic B6.1: Monitoring and maintaining the environment (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers all of the content in the sub-topic B6.1 (Monitoring and maintaining the environment) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Be able to explain how to carry out a field investigation into the distribution and abundance of organisms Be able to estimate population numbers in a given area Describe both positive and negative human interactions within an ecosystem Explain human impacts on biodiversity The benefits and challenges of maintaining local and global biodiversity All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Structure of DNA - GCSE
GJHeducationGJHeducation

Structure of DNA - GCSE

(1)
A fully-resourced lesson which looks at the structure of DNA in the detail which is required at GCSE level (14 - 16 year olds in the UK). The lesson includes an engaging lesson presentation (35 slides) and associated worksheets. The main aim of the lesson is to ensure that students recognise key terminology that comes with this topic such as nucleotide and (nitrogenous) bases. Engaging tasks have been written into the lesson, in order to maintain the motivation, such as when students are introduced to complimentary base pairing through a version of the gameshow “Take me Out”. Additional knowledge is provided at appropriate times in the lesson to stretch and challenge the more able. There are regular progress checks throughout the lesson so that students can assess their understanding of the structure. As stated above, this lesson has been written for GCSE students but could be used with younger students and also with A-level students as a means of a recap before they learn about this in greater detail.
Sampling techniques
GJHeducationGJHeducation

Sampling techniques

(1)
A fully-resourced lesson that looks at the different sampling methods that can be used to estimate the populations of animals and plants in a habitat and to analyse how their distribution is affected, The lesson includes a detailed and engaging lesson presentation (56 slides) and differentiated worksheets so that students of different abilities are challenged and can access the work. The lesson begins by looking at the use of a quadrat to estimate the population of plants in a habitat. There is a focus on the mathematical calculations associated with the method and students are given hints and worked examples so that any common misconceptions are addressed. Moving forwards, students are introduced to the capture-mark-recapture technique to sample animals. The rest of the lesson looks at alternative pieces of apparatus, such as the sweep net, and discusses situations when these would be used. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but is appropriate for both younger students who are learning about ecology and also for A-level students who need a recap on this topic.
Writing chemical symbol equations
GJHeducationGJHeducation

Writing chemical symbol equations

(0)
A fully-resourced lesson which uses a step-by-step guide to show students how to write fully balanced symbol equations. The lesson includes an engaging lesson presentation (38 slides) and associated worksheets containing questions which iaredifferentiated. The lesson begins by talking the students through the three steps involved in writing a chemical symbol equation. The first step involves writing in the formula for the elements. Students are introduced to the term, diatomic, and shown the 8 molecules that have to be written as a pair of atoms. Moving forwards, students are shown how to write chemical formulae for ionic compounds. They are reminded of how to use the group of the Periodic Table to work out the ion charge and how this is crucial when writing the formula. They are also shown how to write formulae which include brackets which is necessary when the charged molecules are involved. Finally, students are reminded of the rules of balancing symbol equations. There are progress checks at each stage so that students can assess their understanding and any misconceptions can be be addressed immediately. Time is taken to talk about state symbols, in case the exam question requires these to be included in the equation. The final section of the lesson involves students bringing their new-found skills together to write symbol equations for a range of reactions, including a neutralisation and reversible reaction. This task is differentiated so that students who need a little bit of assistance can still access the work. This lesson has been written for GCSE students (14-16 year olds in the UK)
Nanoparticles
GJHeducationGJHeducation

Nanoparticles

(0)
An informative lesson presentation (24 slides) that looks at the relative size of the nanoparticles and explains why they are so effective for a range of purposes. The lesson begins by looking at exactly how small nanoparticles are and ensures that students can recognise this size in a range of ways, including standard form. Moving forwards, in order to help students to understand why these nanoparticles are being used in a lot of different ways, students are introduced to bulk materials. Included in the remainder of the lesson is calculating the surface area to volume ratio so this can be used as a comparison point. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson has been written for GCSE students.
Formulae of ionic compounds
GJHeducationGJHeducation

Formulae of ionic compounds

(0)
An engaging and informative lesson presentation (43 slides) that shows students how to write accurate chemical formulae for ionic compounds. In order to write accurate chemical formulae, students need to know the charges of the ions involved. For this reason, the lesson begins by reminding students how they can use the Periodic Table to work out the charge of the charged atoms. Students are shown how they can use these ion charges to write the formula and then are given the opportunity to apply this to a number of examples. Moving forwards, students are shown how some formulae need to contain brackets. The lesson finishes with a competition called “Ye Olde Chemical Formula Shop” where students get points if they are the first to work out the formula of a given substance. This lesson has been written for GCSE students.
Alloys
GJHeducationGJHeducation

Alloys

(0)
A fully-resourced lesson which explores how the composition of different alloys is related to their properties and their uses. The lesson includes an engaging and informative lesson presentation (38 slides) and an associated differentiated worksheet. The lesson begins by challenging the students to use their Chemistry knowledge of numbers to come up with the letters of the word alloy. Students are introduced to the definition of this key term and then use a wordsearch to find both the names of the alloys but also the metals that are found in these mixtures. The main aim of this lesson is to get students to understand why alloys are chosen for jobs rather than pure metals and there is a focus on atoms and their arrangement. Students are challenged to use the example of copper and brass to complete a summary passage which is differentiated so that those who need more assistance are still able to access the work. The remainder of the lesson focuses on steel and solder, again exploring how their different features are related to how they are used in modern day life. Progress checks have been written into the lesson at regular intervals to allow the students to check their understanding and a range of quick quiz competitions will aid engagement. This lesson has been designed for GCSE students but could be used with KS3 students who are looking at mixtures within the atoms and elements topic.
Homeostasis and negative feedback (AQA A-level Biology)
GJHeducationGJHeducation

Homeostasis and negative feedback (AQA A-level Biology)

(0)
This lesson describes how homeostasis in mammals involves control systems that maintain the internal environment within narrow limits. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the content of point 6.4.1 of the AQA A-level biology specification, which is the titled “Pripnciples of homeostasis and negative feedback”. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential and the use of glucose as a respiratory substrate. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within restricted limits and the importance of these systems are looked into in detail. Time is taken to consider the importance of maintaining these aspects, specifically with relation to the activity of enzymes. As such, students will also discuss how the pH of the blood is maintained. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring the aspect back to the optimum and the added degree of control which this provides. Positive feedback is also briefly mentioned at the end.
The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)
GJHeducationGJHeducation

The causes and potential treatments of DIABETES MELLITUS TYPE I and II (OCR A-level Biology A)

(0)
This engaging and fully-resourced lesson covers the content of specification points 5.1.4 (e and f) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the differences between diabetes mellitus type I and II and the potential treatments of this disease. The lesson has been designed to take place in a diabetes clinic where students will be challenged to perform a number of roles such as diagnosing a patient with either type I or II and to write a letter to this patient explaining how the disease was caused and any treatments that will be recommended to control the disease. It has been planned to build on the knowledge that they will have of these diseases from GCSE and links are made to other A-level topics such as the beta cells of the pancreas which they considered during the lesson on the control of blood glucose concentration. The final part of the lesson looks at the potential treatments which include the genetic modification of bacteria. This topic is covered in greater detail in module 6.1.3 so this section of the lesson focuses on the enzymes involved as well as the plasmid DNA from a bacterial cell. This lesson has been designed for students studying the OCR A-level Biology A course and runs alongside the uploaded lesson on the control of blood glucose concentration as well as the other lessons that have been added for module 5.1.4
Genetic drift (AQA A-level Biology)
GJHeducationGJHeducation

Genetic drift (AQA A-level Biology)

(1)
This engaging and fully-resourced lesson looks at how genetic drift can arise after a genetic bottleneck or as a result of the Founder effect. The detailed PowerPoint and accompanying resources have been designed to cover the fourth part of point 7.3 of the AQA A-level Biology specification which states that students should be able to explain the importance of genetic drift in causing changes in allele frequency in small populations A wide range of examples are used to show the students how a population that descends from a small number of parents will have a reduction in genetic variation and a change in the frequency of existing alleles. Students are encouraged to discuss new information to consider key points and understanding checks in a range of forms are used to enable them to check their progress and address any misconceptions. Students are provided with three articles on Huntington’s disease in South Africa, the Caribbean lizards and the plains bison to understand how either a sharp reduction in numbers of a new population beginning from a handful of individuals results in a small gene pool. Links to related topics are made throughout the lesson to ensure that a deep understanding is gained.
Control of heart rate (AQA A-level Biology)
GJHeducationGJHeducation

Control of heart rate (AQA A-level Biology)

(1)
This fully-resourced lesson looks at the coordination and control of heart rate by the cardiovascular centre in the medulla oblongata. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the second part of point 6.1.3 of the AQA A-level Biology specification which states that students should know the roles and locations of the sensory receptors and the roles of the autonomic nervous system and effectors in the control of heart rate. This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work This lesson has been written to tie in with the previous lesson on the conducting system of the heart which is also detailed in specification point 6.1.3