A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This lesson describes how the primary structure determines the secondary structure, 3D structure and properties of a protein. The detailed and engaging PowerPoint and accompanying resources have been designed to cover points 2.6 (ii) & (iii) of the Edexcel International A-level Biology specification but also makes specific reference to genes and protein synthesis and therefore introduces students to processes covered later in topic 2.
The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur.
The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. The lesson concludes with one final task where the students have to identify three errors in a passage about the hydrolysis of a dipeptide or polypeptide.
Hours and hours of planning have gone into each and every lesson that’s included in this bundle to ensure that the students are engaged and motivated whilst the detailed content of topic 2 of the Edexcel International A-level Biology specification is covered. Membranes, proteins, DNA and gene expression represent some of the most important structures, molecules and processes involved in this subject and a deep understanding of their role in living organisms is important for a student’s success.
The 20 lesson PowerPoints and accompanying resources contain a wide range of activities which cover the following topic 2 specification points:
Know the properties of gas exchange surfaces in living organisms
Understand how the rate of diffusion can be calculated using Fick’s Law of Diffusion
Understand how the structure of the mammalian lung is adapted for rapid gas exchange
The structure and properties of cell membranes
The movement of free water molecules by osmosis
The movement across membranes by passive and active transport
The role of channel and carrier proteins in membrane transport
The basic structure of an amino acid
The formation of polypeptides and proteins
The structure of proteins
The mechanism of action and specificity of enzymes
Enzymes are biological catalysts
Intracellular and extracellular enzymes
The basic structure of mononucleotides
The structure of DNA and RNA
The process of DNA replication
The nature of the genetic code
A gene as a sequence of bases on DNA that codes for a sequence of amino acids
The process of transcription and translation
Errors in DNA replication give rise to mutations
Mutations give rise to disorders but many mutations have no observable effect
The meaning of key genetic terms
Understanding the pattern of monohybrid inheritance
Sex linkage on the X chromosome
Understand how the expression of a gene mutation in people with cystic fibrosis impairs the functioning of the gaseous exchange, digestive and reproductive systems
The uses and implications of genetic screening and prenatal testing
Due to the detail included in all of these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete the teaching of the bundle
If you would like to sample the quality of these lessons, then download the rapid gas exchange, osmosis, DNA & RNA, genetic code, genetic terms and cystic fibrosis lessons as these have been uploaded for free.
This fully-resourced lesson describes how evolution can come through natural selection and acts on variation to bring about adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 3.2 (i) & (ii) of the Edexcel A-level Biology B specification and considers a range of different behavioural, anatomical and physiological adaptations.
President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. The final part of the lesson focuses on the adaptations of the anteater and links are made to the topic of classification hierarchy which was covered at the start of topic 3…
Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
This lesson describes how the role of carrier of proteins and ATP in active transport and the co-transport of sodium ions and glucose in the ileum. The PowerPoint and accompanying resources are part of the final lesson in a series of 3 that have been designed to cover the details of point 2.3 of the AQA A-level Biology specification and also includes descriptions of endocytosis and exocytosis
The start of the lesson focuses on the structure of this energy currency and challenges the students prior knowledge as they covered ATP in topic 1.6. As a result, they will recall that this molecule consists of adenine, ribose and three phosphate groups and that in order to release the stored energy, ATP must be hydrolysed. Time is taken to emphasise the key point that the hydrolysis of ATP can be coupled to energy-requiring reactions and this leads into a series of exam-style questions where students are challenged on their knowledge of simple and facilitated diffusion to recognise that ATP is needed for active transport. These questions also challenge them to compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The students are then shown how exocytosis is involved in a synapse and in the release of ADH from the pituitary gland during osmoregulation which they will cover in later topics. The final part of the lesson describes the movement of sodium ions and glucose from the ileum to the epithelial cells to the blood using a range of proteins which includes cotransporter proteins and students will learn that similar mechanisms are seen in the phloem and in the proximal convoluted tubule.
This lesson describes the structure of the chromosome, including DNA, histone proteins, chromatids, centromeres and telomeres. The PowerPoint and accompanying worksheets have been primarily designed to cover point 5.1 (a) of the CIE A-level Biology specification but has been specifically planned to provides links to the upcoming topics of the cell cycle, mitosis, meiosis and DNA replication.
The lesson begins with a prior knowledge check, where the students have to recall why the DNA in prokaryotic cells is described as being naked. This re-introduces histone proteins, and then time is taken to describe that the wrapping of DNA molecules around these proteins forms the linear chromosomes in the nucleus of eukaryotic cells. A series of 7 exam-style questions are used throughout the lesson and challenge the students to apply their knowledge and understanding to unfamiliar situations and challenge their knowledge of topics 1 and 2 (cell structure and biological molecules). The mark schemes for all of these questions are embedded into the PowerPoint to allow the students to assess their progress. Moving forwards, a quiz competition is used to introduce the terms diploid, chromatid and centromere and the S phase of interphase in a fun and memorable way. Students will learn that the duplication of chromosomes results in pairs of identical sister chromatids that are joined by a centromere. The importance of the splitting of the centromere in mitosis is explained and then the students are challenged to explain why the non-sister chromatids are involved in crossing over, when variation is needed. The final part of the lesson considers the repetitive nucleotide sequences found on the end of chromosomes that are known as telomeres and students will gain an initial understanding about their structure so they are prepared for the upcoming lesson on their significance
This engaging lesson looks at the role of haemoglobin in carrying oxygen and carbon dioxide. The PowerPoint has been designed to cover point 8.1 (f) of the CIE International A-level Biology specification and includes references to the role of carbonic anhydrase and the formation of haemoglobinic acid and carbaminohaemoglobin.
The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
This fully-resourced lesson looks at the structures that make up the gross anatomy of the heart and also covers the calculation of cardiac ouput. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the 4th part of point 3.4.1 of the AQA A-level Biology specification which states that students should be able to describe the gross structure of the human heart and be able to use the equation stroke volume x heart rate to calculate cardiac output.
As this topic was covered at GCSE, the lesson has been planned to build on this prior knowledge whilst adding the key details which will enable students to provide A-level standard answers. The primary focus is the identification of the different structures of the heart but it also challenges their ability to recognise the important relationship to function. For example, time is taken to ensure that students can explain why the atrial walls are thinner than the ventricular walls and why the right ventricle has a thinner wall than the left ventricle. Opportunities are taken throughout the lesson to link this topic to the others found in topic 3.4.1 such as blood circulation and the cardiac cycle. Moving forwards, the students are introduced to the stroke volume and meet normative values for this and for resting heart rate. This will lead into the calculation for cardiac output and a series of questions are used to test their ability to apply this equation as well as percentage change.
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover point 1.1 (iv) as it is detailed in the Edexcel A-level Biology B specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced.
By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not.
A range of activities are used to motivate and engage the students as they discover that glycogen is stored in liver and muscle cells, which it is able to do because of its compact structure. They are encouraged to discuss why the branched structure of this polysaccharide means that it can act as an immediate source of energy and they will recognise that hydrolysis reactions at the multiple ends of this chain will release glucose. Following on from the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant.
Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
This fully-resourced lesson describes how light intensity, carbon dioxide concentration and temperature limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover point 5.2.1 (g) (i) of the OCR A-level Biology A specification and also includes a brief consideration of water stress.
The lesson has been specifically written to tie in with the three previous lessons in this module which covered the structure of the chloroplast, the light-dependent and light-independent stages and the uses of TP. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions.
This fully-resourced lesson describes how the mutations that occur during DNA replication can effect a protein’s primary structure and lead to disorders. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 2.14 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and focuses on the effects of substitutions, deletions and insertions and considers a real life biological example in sickle cell anaemia.
In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered in the previous lessons. Therefore, the start of the lesson focuses on transcription and translation and students are reminder of how to use the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of mutation whilst challenging the students to recognise three terms which are associated with the genetic code. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. Students will learn that a substitution is responsible for the new allele that causes sickle cell anaemia and they are tested on their understanding through an exam-style question. As with all of the questions, a mark scheme is included in the PowerPoint which can be displayed to allow the students to assess their understanding.
The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
This bundle contains 11 detailed lesson PowerPoints and the variety of tasks that are contained within these slides and the accompanying resources will engage and motivate the students whilst covering the following specification points within topic 1 of the Edexcel International A-level Biology specification:
The importance of water as a solvent in transport
The difference between monosaccharides, disaccharides and polysaccharides
The relationship between the structure and function of monosaccharides
The formation and breakdown of disaccharides
The relationship between the structure and function of glycogen, amylose and amylopectin
The synthesis of triglycerides
The differences between saturated and unsaturated lipids
The relationship between the structure of capillaries, arteries and veins and their functions
Atrial systole, ventricular systole and cardiac diastole as the three stages of the cardiac cycle
The operation of the mammalian heart and the major blood vessels
The role of haemoglobin in the transport of oxygen and carbon dioxide
The oxygen dissociation curve for foetal haemoglobin and during the Bohr effect
The course of events that lead to atherosclerosis
The blood clotting process
If you want to sample the quality of this bundle, then download the glycogen, amylose and amylopectin, cardiac cycle and blood clotting lessons as these have been uploaded for free
It’s fair to say that cell structure and biological molecules are two of the most important topics in the OCR A-level Biology A course and all 19 lessons that are included in this bundle have been planned at length to cover the module 2.1.1 & 2.1.2 specification points in the detail required at this level.
The lesson PowerPoints and their accompanying resources contain a wide range of tasks as well as regular checks to allow students to assess their understanding of the current content as well as prior knowledge checks to emphasise the importance of making links to topics in other modules.
The following specification points in modules 2.1.1 (cell structure) and 2.1.2 (biological molecules) are covered by the lessons in this bundle:
2.1.1
The use of microscopy to observe and investigate different types of cell and cell structure in a range of eukaryotic organisms
The use of the eyepiece graticule and stage micrometer
The use of staining in light microscopy
The use and manipulation of the magnification formula
The difference between magnification and resolution
The ultrastructure of eukaryotic cells and the functions of the different cellular components
The interrelationship between the organelles involved in the production and secretion of proteins
The importance of the cytoskeleton
The similarities and differences between the ultrastructure of prokaryotic and eukaryotic cells
2.1.2
The properties and roles of water in living organisms
The concept of monomers and polymers and the importance of condensation and hydrolysis reactions
The chemical elements that make up biological molecules
The structure and properties of glucose and ribose
The synthesis and breakdown of a disaccharide and a polysaccharide by the formation and breakage of glycosidic bonds
The structure of starch, glycogen and cellulose molecules
The relationship between the structure, function and roles of triglycerides, phospholipids and cholesterol in living organisms
The general structure of an amino acid
The synthesis and breakdown of dipeptides and polypeptides
The levels of protein structure
The structure and function of globular proteins
The properties and functions of fibrous proteins
The key inorganic ions involved in biological processes
The chemical tests for proteins, reducing and non-reducing sugars, starch and lipids
If you would like to sample the quality of the lessons included in this bundle, then download the following lessons as they have been uploaded for free:
The use of microscopy
The importance of the cytoskeleton
Properties and roles of water
Glucose & ribose
General structure of an amino acid
Dipeptides, polypeptides and protein structure
This detailed lesson describes how the ventilation rate is controlled by the ventilation centre in the medulla oblongata. The engaging PowerPoint and accompanying resource have been designed to cover the second part of point 7.13 (ii) in unit 5 of the Edexcel International A-level Biology specification.
The previous lesson described the control of heart rate so this lesson has been written to tie in with this and to use this knowledge to further the students understanding of the control of ventilation rate. The lesson begins with a focus on the muscles involved in ventilation, specifically the diaphragm and external intercostal muscles, so that students can understand how their contraction results in an increase in the volume of the thoracic cavity. Boyle’s law is briefly introduced to allow students to recognise the relationship between volume and pressure so that the movement of air with the pressure gradient can be described. Time is then taken to consider the importance of inhalation and an exam-style question challenges the students to explain that a constant supply of oxygen to the alveoli is needed to maintain a steep concentration gradient with the surrounding capillaries. The students are then tasked with writing a description of exhalation at rest using the description of inhalation as their guide. The rest of the lesson focuses on the mechanisms involved in increasing the rate and depth of breathing during exercise. Students will use their knowledge of the control of heart rate to recall that chemoreceptors detect changes in oxygen and carbon dioxide and blood pH and that the medulla oblongata processes the sensory information that it receives before coordinating a response. The final task challenges them to use the information provided in this lesson and the previous one to order 10 detailed descriptions so they can form a complete passage about this control system
All 5 lessons in this lesson bundle are highly detailed to cover the specification points shown below that are found in AS unit 2, topic 1 of the WJEC A-level Biology specification:
The classification of organisms into groups based on their evolutionary relationships
The need for classification
The three-domain classification system
The characteristic features of the five kingdoms of living organisms
The use of physical features and biochemical methods to assess the relatedness of organisms
The concept of species
The use of the binomial naming system
Biodiversity as the variety of organisms found within a specified geographic region
Biodiversity can be assessed in a habitat using Simpson’s index of diversity
Biodiversity can be assessed within a species at a genetic level
Biodiversity can be assessed at a molecular level using DNA fingerprinting
Biodiversity has been generated through natural selection
Anatomical, physiological and behavioural adaptations
As well as the A-level Biology content within the slides, current understanding and prior knowledge checks in the form of exam-style questions, differentiated tasks and quiz competitions are included throughout to allow the students to assess their progress
If you would like to sample the quality of the lessons included in this bundle, then download the classification, species and the binomial naming system lesson as this has been shared for free
This lesson focuses on the key terms associated with ecosystems and describes how populations are affected by a range of factors. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 4 lessons that cover the details of point 7.4 of the AQA A-level Biology specification
As shown in the cover image, a modified version of the quiz competition BLOCKBUSTERS runs throughout the lesson and this introduces new terms as well as challenging students to recall key terms that were encountered in previous topics. These include population, ecosystems, competition, niche, abiotic factors and carrying capacity. Each time a term is met, time is taken to describe its meaning and to explain its relevance and context in this topic of populations in ecosystems. Exam-style questions are also used to challenge the students to apply their understanding and displayed mark schemes allow them to assess their progress. Prior knowledge checks interspersed within the lesson which check on topics such as the nitrogen cycle, adaptations and the biological classification of a species
The engaging PowerPoint and accompanying differentiated worksheets which come as part of this lesson resource have been designed to cover the SUPPLEMENT section of topic 13.1 of the CIE IGCSE Biology specification which states that students should be able to describe the structure and function of the kidneys. Students will initially be introduced to the gross anatomy of the kidneys with the cortex and medulla and the associated ureter before moving on to the fine anatomy of the tubules and focusing on the key functions like ultrafiltration and selective reabsorption. Lots of discussion points and student discovery have been written into the lesson to encourage students to think about why a certain process takes place before attempting to explain it using the Biology. In addition, there are lots of understanding checks and prior knowledge checks so that students are challenged on their knowledge of previously learned topics such as active transport and the components of blood.
The final task of the lesson challenges the students to use their knowledge of the formation of urea from earlier in topic 13 and combine it with what they have learnt in this lesson to arrange statements about the journey of this molecule into the right order
This lesson has been designed for students who are studying the CIE IGCSE Biology course but is suitable for older students who are studying the kidney at A-level and want to recall some of the key details of the structure and function of this organ
Each of the 8 lessons which are included in this bundle are fully-resourced and the PowerPoints and accompanying worksheets cover all of the detailed content in topic 5 (Homeostasis and response) of the AQA GCSE Combined Science specification. Designed to contain a wide range of activities, the students will be motivated and engaged by the various quiz competitions and interesting tasks whilst the understanding and previous knowledge checks will enable them to assess their progress on the current topic as well as challenge them to make links between the topics.
The specification points and lesson topics included in this bundle are:
4.5.1 Homeostasis
4.5.2.1 Structure and function of the nervous system
4.5.3.1 The human endocrine system
4.5.3.2 Control of blood glucose concentration
4.5.3.4 Hormones in human reproduction
4.5.3.5 Contraception
4.5.3.6 The use of hormones to treat infertility
4.5.3.7 Negative feedback
All of these lessons have been written by an experienced teacher for students studying the AQA Combined Science course
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same autosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use fully-labelled genetic diagrams to interpret the results of crosses involving autosomal linkage.
This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be.
This lesson has been written to tie in with the other 6 lessons from topic 7.1 (Inheritance) and these have also been uploaded
This bundle contains 7 lessons which combine to cover the content of topic 7.1 (Inheritance) of the AQA A-level Biology specification. All 7 are fully-resourced and contain differentiated tasks which allow students of differing abilities to access the work whilst being challenged. They have been designed to include a wide range of activities that check the understanding of the current topic as well as making links between other parts of this topics and topics covered earlier in the course.
The lessons on codominant and multiple alleles and epistasis are free so you can sample the quality of this bundle before deciding to make a purchase
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated task worksheets that have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use the test to compare the goodness of fit between the observed phenotypic ratios and expected ratios.
The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
This is the final lesson of topic 7.1 (inheritance) and links are made throughout the lesson to earlier parts of this topic such as dihybrid inheritance as well as to earlier topics such as meiosis.