Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Electricity and circuits REVISION (Edexcel GCSE Physics)
GJHeducationGJHeducation

Electricity and circuits REVISION (Edexcel GCSE Physics)

(1)
This is a fully-resourced revision lesson which covers the content detailed in topic 10 (electricity and circuits) of the Pearson Edexcel GCSE Physics specification. The engaging PowerPoint and accompanying resources contain a wide range of activities which include exam-style questions with clearly explained answers, differentiated tasks and quiz competitions to allow students to assess their understanding and ultimately recognise those areas which need further consideration. The following specification points have been given particular attention in this lesson: The electrical symbols that represent the electrical components Describe the differences between series and parallel circuits Recall that a voltmeter is connected in parallel One volt is equal to one joule per coulomb Recall and use the equations that calculate energy transferred, charge, potential difference, power and electrical power Recall that an ammeter is connected in series Calculate the currents, potential differences and resistances in series and parallel circuits Explain how current varies with potential difference in resistors Know the functions of the wires in a plug and the safety features This lesson has been designed to fall in line with the heavy mathematical content of the Physics specification with a number of calculation tasks and students are guided through the range of skills that they will have to employ
Mutations & their effects (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Mutations & their effects (Edexcel Int. A-level Biology)

(1)
This fully-resourced lesson describes how the mutations that occur during DNA replication can effect a protein’s primary structure and lead to disorders. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 2.14 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and focuses on the effects of substitutions, deletions and insertions and considers a real life biological example in sickle cell anaemia. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered in the previous lessons. Therefore, the start of the lesson focuses on transcription and translation and students are reminder of how to use the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of mutation whilst challenging the students to recognise three terms which are associated with the genetic code. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. Students will learn that a substitution is responsible for the new allele that causes sickle cell anaemia and they are tested on their understanding through an exam-style question. As with all of the questions, a mark scheme is included in the PowerPoint which can be displayed to allow the students to assess their understanding. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
The roles of enzymes & mechanism of action (OCR A-level Biology)
GJHeducationGJHeducation

The roles of enzymes & mechanism of action (OCR A-level Biology)

(1)
This fully-resourced lesson describes the roles of enzymes in catalysing both intracellular and extracellular reactions and the mechanism of enzyme action. The engaging PowerPoint and accompanying resources have been designed to cover points 2.1.4 (a, b & c) of the OCR A-level Biology A specification and includes descriptions of Fischer’s lock and key hypothesis and Koshland’s induced-fit model as well as a focus on catalase and the digestive enzymes as intracellular and extracellular enzymes respectively. The lesson has been specifically planned to tie in with module 2.1.2 where protein structure and globular proteins were covered. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The final part of the lesson focuses on intracellular and extracellular enzymes. The students are challenged on their recall of the roles of DNA helicase and polymerase in DNA replication before they are challenged on their ability to apply their knowledge and understanding to an unfamiliar situation with questions about catalase and its role in the decomposition of hydrogen peroxide. The lesson concludes with one further set of exam-style questions that challenge their knowledge of carbohydrates, lipids and proteins from module 2.1.3 as they have to recognise some extracellular digestive enzymes from descriptions of their substrates.
The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)
GJHeducationGJHeducation

The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)

(1)
This is a fully-resourced lesson that covers the content of specification point 5.1.5 (l) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the sliding filament model of muscular contraction. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding and previous knowledge checks will not only allow them to assess their progress but also challenge them to make links to other Biology topics. The lesson begins by using an idea from the quiz show POINTLESS to get them to recognise that myology is the study of muscles. This leads nicely into the next task, where they have to identify three further terms (from 12) which will also begin with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students are introduced to the sarcomere and the bands and zones that are found within a myofibril so they can discover how most of these structures narrow but the A band, which is the length of the myosin filament, stays the same length between resting and contracted muscle. This has been designed to lead into a discussion point where they are encouraged to consider how the sarcomere can narrow but the lengths of the myofilaments can remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of the calcium ions but also ATP and the idea of the sources of this molecule, including creatine phosphate, are discussed in more detail later in the lesson. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly. This lesson has been designed for students studying the OCR A-level Biology course and ties in nicely with the other lessons on this particular topic such as neuromuscular junctions as well as the other uploaded lessons from module 5
PAPER 5 FOUNDATION TIER REVISION (AQA GCSE Combined Science)
GJHeducationGJHeducation

PAPER 5 FOUNDATION TIER REVISION (AQA GCSE Combined Science)

(1)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics P1 - P4, that will assessed on PAPER 5. It has been specifically designed for students on the AQA GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to cover as many specification points as possible but the following sub-topics have received particular attention: The size of an atom The differences between isotopes Using the half-life in calculations The 13 recall and apply equations in topics P1 - P4 Electrical circuit symbols Measuring current using an ammeter Current and potential difference in series and parallel circuits Changes in resistance in resistors Mains domestic supply Kinetic, internal and potential energy in a system Calculating specific heat capacity and latent heat Physical and chemical changes Conservation of energy Calculating gravitational potential and kinetic energy Penetrating abilities of the different types of radiation In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for extra support when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as circuit calculations and rearranging formulae and converting between units. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 or 4 teaching hours to complete the tasks and therefore this can be used at different points throughout the course as well as acting as a final revision before the PAPER 5 exam.
Topic 8: The control of gene expression (AQA A-level Biology)
GJHeducationGJHeducation

Topic 8: The control of gene expression (AQA A-level Biology)

10 Resources
Each of the 10 lessons included in this bundle have been written to specifically cover the content as detailed in topic 8 of the AQA A-level Biology specification (The control of gene expression). The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of this potentially difficult topic! Lessons which cover the following specification points are included in this bundle: Gene mutations and their effect on the structure of proteins Most of a cell’s DNA is not translated Totipotent, pluripotent, multipotent and unipotent stem cells Regulation of transcription by transcription factors The role of oestrogen in initiating transcription Epigenetic control of gene expression in eukaryotes Inhibition of transcription by increased DNA methylation or decreased acetylation of histones Translation of mRNA can be inhibited by RNA interference Determining the genome of simpler organisms to determine the proteome and its applications The development of DNA sequencing methods The production of DNA fragments through use of enzymes or a gene machine The role of the PCR to amplify DNA fragments The transfer of DNA into a host cell VNTRs The technique of genetic fingerprinting to analyse DNA fragments If you would like to see the quality of the lessons, download the producing DNA fragments and DNA methylation and acetylation lessons as these have been uploaded for free
Monoclonal antibodies
GJHeducationGJHeducation

Monoclonal antibodies

(4)
An engaging lesson presentation (32 slides) and differentiated worksheets that look at the meaning of the substances termed monoclonal antibodies, explains how they are produced and explores their different applications. The lesson begins by breaking the term down into three parts so that students can understand that these substances are proteins that attach to antigens and come from a single clone of cells. Students will meet key terms such as lymphocytes, myelomas and hybridomas and will be able to link them to understand how these antibodies are produced. Moving forwards, time is taken to focus on the application of monoclonal antibodies in pregnancy tests. There are regular progress checks throughout the lesson so that students can assess their understanding and a set homework is included as part of the lesson. This lesson has been written for GCSE students but can be used with lower ability A-level students who are studying this topic
Edexcel GCSE Combined Science P2 (Motion and forces) REVISION
GJHeducationGJHeducation

Edexcel GCSE Combined Science P2 (Motion and forces) REVISION

(3)
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the sub-topics found within Topic P2 (Motion and forces) of the Edexcel GCSE Combined Science specification. The sub-topics and specification points that are tested within the lesson include: Recall and use the equations to calculate average speed Recall and use the equation to calculate acceleration Use the equations of motion Analyse velocity-time graphs to be able to compare and calculate accelerations and calculate the distance travelled from the area under the graph Recall and use Newton’s second law involving force, mass and acceleration Describe the relationship between the weight of a body and gravitational field strength Define momentum, recall and use the equation Describe examples of momentum in collisions Recall that stopping distance is made up of the sum of the thinking distance and braking distance Explain the factors that affect stopping distance Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
Cambridge IGCSE Chemistry Topic 4 REVISION (Stoichiometry)
GJHeducationGJHeducation

Cambridge IGCSE Chemistry Topic 4 REVISION (Stoichiometry)

(3)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 4 (Stoichiometry) of the Cambridge IGCSE Chemistry (0620) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers. The specification points that are covered in this revision lesson include: CORE Use the symbols of the elements and write the formulae of simple compounds Construct word equations and simple balanced chemical equations Define relative molecular mass, Mr, as the sum of the relative atomic masses SUPPLEMENT Determine the formula of an ionic compound from the charges on the ions present Construct equations with state symbols Define the mole and the Avogadro constant Use the molar gas volume, taken as 24 dm3 at room temperature and pressure Calculate stoichiometric reacting masses, volumes of gases and solutions, and concentrations of solutions expressed in mol / dm3. The students will thoroughly enjoy the range of activities, which include quiz competitions such as “In the BALANCE” where they have to compete to be the 1st to balance an equation and recognise the number of moles involved whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
Sex determination
GJHeducationGJHeducation

Sex determination

(2)
A fully-resourced lesson which looks at how the sex chromosomes which determine gender are inherited in humans. The lesson includes an engaging lesson presentation (24 slides) and an associated worksheet containing knowledge recall and application questions. The lesson begins with a range of different quiz competitions which enable the students to get the answers of X, Y, zygote and 23. With a little bit of assistance, students are challenged to bring these terms together to complete a passage about how the inheritance of either an XX genotype will lead to a female or a XY genotype will lead to a male. Moving forwards, students are told how they will be expected to be able to construct a genetic diagram to show the inheritance of gender and so are given a quick recap before being challenged to do just that. The last part of the lesson gets students to discuss and consider whether females or males are responsible for determining sex in terms of their gametes. There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students primarily but the content is suitable for both KS3 and even A-level students
Choosing reaction conditions (REVERSIBLE REACTIONS)
GJHeducationGJHeducation

Choosing reaction conditions (REVERSIBLE REACTIONS)

(2)
A thought-provoking lesson which explores why certain conditions are chosen for reversible reactions. Throughout this lesson, students are challenged to think about the topic in three ways. Of course, they have to consider the chosen conditions from a Scientific angle by knowing how temperature and pressure affect the position of the equilibrium. They must also think about the business (and health) side of the argument by recognising that increased pressures are both dangerous and expensive. Finally, they are taught recognise how the chosen conditions are in fact a compromise which has taken both the Science and business into account. Students are guided through the choice of conditions for the production of methanol so that they can apply their knowledge to the production of ammonia by the Haber process. This lesson has been designed for GCSE students.
Ventilation and gas exchange in bony fish (OCR A-level Biology)
GJHeducationGJHeducation

Ventilation and gas exchange in bony fish (OCR A-level Biology)

(2)
This lesson describes the roles of the buccal cavity, operculum, gill lamellae and countercurrent flow in ventilation and gas exchange in bony fish. The detailed PowerPoint and accompanying resources are part of the first lesson in a series of 2 that have been designed to cover the details of point 3.1.1 (f) of the OCR A-level Biology A specification. The second lesson in this series covers the mechanisms of ventilation and gas exchange in insects. The lesson has been specifically planned to prepare students for the content of module 3.1.2 (Transport in animals) and therefore begins with an introduction and a brief description of the single circulatory system of a fish as this has an impact on the delivery of deoxygenated blood to the lamellae. A quick quiz competition is used to introduce the operculum and then the flow of blood along the gill arch and into the primary lamellae and then into the capillaries in the secondary lamellae is described. The next task challenges the students to use their knowledge of module 2 to come up with the letters that form the key term, countercurrent flow. This is a key element of the lesson and tends to be a feature that is poorly understood, so extra time is taken to explain the importance of this mechanism. Students are shown two diagrams, where one contains a countercurrent system and the other has the two fluids flowing in the same direction, and this is designed to support them in recognising that this type of system ensures that the concentration of oxygen is always higher in the oxygenated water than in the blood in the lamellae. The remainder of the lesson focuses on the coordinated movements of the buccal-opercular pump to ensure that the water continues to flow over the gills. Current understanding and prior knowledge checks are included throughout the lesson and students can assess their progress against the mark schemes which are embedded into the PowerPoint
Topic 3: Organisms exchange substances with their environment (AQA A-level Biology)
GJHeducationGJHeducation

Topic 3: Organisms exchange substances with their environment (AQA A-level Biology)

17 Resources
This lesson bundle contains 17 detailed and fully-resourced lessons which cover the following specification points in topic 3 of the AQA A-level Biology specification: Topic 3.1 The relationship between the size of an organism or structure and its surface area to volume ratio The development of systems in larger organisms as adaptations that facilitate exchange as this ratio reduces Topic 3.2 Adaptations of gas exchange surfaces as shown by gas exchange in single-celled organisms, insects, bony fish and the leaves of dicotyledonous plants The gross structure of the human gas exchange system The essential features of the alveolar epithelium as a surface over which gas exchange takes place The mechanism of breathing to include the role of the diaphragm and the intercostal muscles Topic 3.3 During digestion, large molecules are hydrolysed to smaller molecules Digestion in mammals by amylases, disaccharidases, lipase, endopeptidases, exopeptidases and dipeptidases Mechanisms for the absorption of the products of digestion by cells lining the ileum of mammals Topic 3.4.1 The structure and role of haemoglobin in the loading, transport and unloading of oxygen The effects of carbon dioxide concentration on the dissociation of oxyhaemoglobin The general pattern of blood circulation in a mammal The gross structure of the human heart Pressure and volume changes and valve movements during the cardiac cycle The structure of the arteries, arterioles and veins The formation of tissue fluid and its return to the circulatory system Topic 3.4.2 Xylem as the tissue that transports water The cohesion-tension theory of water transport Phloem as the tissue that transports organic substances in plants The mass flow hypothesis for the mechanism of translocation in plants If you would like to sample the quality of the lessons included in this bundle, then download the following lessons which have been uploaded for free Alveolar epithelium Absorption in the ileum Arteries, arterioles and veins Formation of tissue fluid Translocation
Optical and electron microscopes (AQA A-level Biology)
GJHeducationGJHeducation

Optical and electron microscopes (AQA A-level Biology)

(2)
This fully-resourced lesson describes the principles and limitations of optical, transmission electron and scanning electron microscopes. The engaging PowerPoint and accompanying resources have been designed to cover the specification details at the start of topic 2.1.3 of the AQA A-level Biology course and also explains the difference between magnification and resolution. When designing all four of the lessons to cover the detail of 2.1.3, I was conscious that microscopes and the methods of studying cells is a topic that doesn’t always attract the full attention of the students. In line with this, I aimed to plan lessons that encouraged engagement so that the likelihood of knowledge retention and understanding was increased. An ongoing quiz competition runs across the 4 lessons and in this particular lesson, rounds such as YOU DO THE MATH and IT’S TIME FOR ACTION will introduce key terms and values in a fun and memorable way. Time is taken to look at the key details of each of the types of microscope and students will be able to describe how light or the transmission of electrons through or across a specimen will form an image. Students will come to recognise the difference between magnification and resolution and examples are provided and exam-style questions used to check on understanding. As well as current understanding checks, prior knowledge checks challenge the students to make links to other biological topics which include specialised cells and tissues, cell structures and biological molecules. As detailed above, this lesson has been written to be the first in a series of 4 lessons and the others, which are uploaded are: Measuring the size of an object viewed under an optical microscope Use of the magnification formula Cell fractionation and ultracentrifugation
AQA GCSE Science B7 REVISION (Ecology)
GJHeducationGJHeducation

AQA GCSE Science B7 REVISION (Ecology)

(2)
An engaging lesson presentation (63 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within the Biology unit B7 (Ecology) of the AQA GCSE Combined Science specification (specification unit B4.7). The topics that are tested within the lesson include: Communities Abiotic factors Biotic factors Levels of organisation Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
OCR Gateway A GCSE Combined Science B3 (Organism-level systems) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science B3 (Organism-level systems) REVISION

(1)
An engaging lesson presentation (66 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module B3 of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Nervous system Reflexes Hormones Negative feedback The menstrual cycle Controlling reproduction Using hormones to treat infertility Students will be engaged through the numerous activities including quiz rounds like "From Numbers 2 LETTERS" and "Take the IVF Hotseat" whilst crucially being able to recognise those areas which need further attention
Gene mutations (OCR A-level Biology)
GJHeducationGJHeducation

Gene mutations (OCR A-level Biology)

(1)
This fully-resourced lesson describes the beneficial, neutral and harmful effects of gene mutations on the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 6.1.1 (a) of the OCR A-level Biology A specification which states that students should be able to understand how substitutions, deletions and insertions change the base sequence and describe how this affects protein production and function. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered in module 2.1.3. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met back in 2.1.3. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Polysaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Polysaccharides (AQA A-level Biology)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover the third part of point 1.2 of the AQA A-level Biology specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Carbohydrates (WJEC A-level Biology)
GJHeducationGJHeducation

Carbohydrates (WJEC A-level Biology)

(1)
This engaging lesson describes the structure, properties and functions of the monosaccharides, disaccharides and polysaccharides. The PowerPoint lesson has been designed to cover point [c] as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and it makes clear links to the upcoming lessons in this topic on alpha and beta glucose and the properties of starch, glycogen, cellulose and chitin. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen, starch and cellulose are recalled and there is a brief introduction to chitin. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.
Isolation and speciation (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Isolation and speciation (Pearson Edexcel A-level Biology A)

(1)
This fully-resourced lesson explores how reproductive isolation can potentially lead to the formation of a new species by speciation . The engaging PowerPoint and accompanying resources have been designed to cover point 5.19 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should understand how isolation reduces gene flow between populations which can lead to allopatric or sympatric speciation. The lesson begins by using the example of a hinny, which is the hybrid offspring of a horse and a donkey, to challenge students to recall the biological classification of a species. Moving forwards, students are introduced to the idea of speciation and the key components of this process, such as isolation and selection pressures, are covered and discussed in detail. Understanding and prior knowledge checks are included throughout the lesson to allow the students to not only assess their progress against the current topic but also to make links to earlier topics in the specification. Time is taken to look at the details of allopatric speciation and how the different mutations that arise in the isolated populations and genetic drift will lead to genetic changes. The example of allopatric speciation in wrasse fish because of the isthmus of Panama is used to allow the students to visualise this process. The final part of the lesson considers sympatric speciation and again a wide variety of tasks are used to enable a deep understanding to be developed.