A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A really engaging and detailed lesson presentation (44 slides) and associated differentiated worksheets that looks at communicable diseases in plants and challenges students to diagnose these diseases in plants. During the lesson the students will take on the role of the “Treeage” (triage) nurse and have to direct each plant to the correct ward in the “CASUALTREE” according to the pathogen which has infected them. They will also have to explain how the symptoms which they have identified were caused and explain the future for this plant, during their time as the “Tree surgeon”. The three diseases included in the lesson are tobacco mosaic virus, crown gall disease and powdery mildew disease. There are regular progress checks throughout the lesson so that students can assess their understanding and there is a set homework included as part of the lesson.
This lesson has been designed for GCSE students but is also suitable for A-level students looking at the communicable diseases topic
This is a fully-resourced lesson which looks at the properties of group 0 of the Periodic Table, the Noble Gases, and includes a lesson presentation (29 slides) and an associated worksheet. The lesson uses a range of engaging quiz competitions to enable the students to understand why these elements do not react. Other properties such as their boiling points are explored and there is continual reference to the other groups of elements so that students can make clear comparisons.
This lesson has been designed for GCSE students (14 - 16 year olds in the UK), but it is also suitable for younger students who might be carrying out a project on the Periodic Table
A fully resourced lesson which guides students through writing decay equations to represent alpha and beta decay. This lesson includes a lesson presentation (41 slides) and differentiated worksheets. Time is taken at the beginning of the lesson to ensure that students know the sub-atomic particles that are found in an alpha particle and a beta particle so that they can understand why the atomic and mass numbers are affected during the decay. Moving forwards, a step-by-step guide is used to show students how to write both types of equations. There are regular progress checks throughout the lesson so that students can check their understanding.
This lesson has been written for GCSE students (14 - 16 year olds in the UK)
A fully- resourced lesson which looks at the chemical reaction that is anaerobic respiration and ensures that students can understand why this form of respiration can only be used for short periods of time. The lesson includes an engaging lesson presentation (39 slides), a newspaper article and application questions.
The lesson begins by challenging the students to recall information about aerobic respiration to recognise that the sole reactant of anaerobic respiration is glucose. A newspaper article about two atheletes from the 10000m race has been written to challenge the students to recognise why one of the athletes wouldnt be able to compete again in the near future whilst the other could. As a result, students will be introduced to lactic acid and will learn how this poisonous substance prevents muscle contraction and causes cramps. Time is taken to ensure that students are familiar with ATP and specifically that they recognise that a much lower yield is produced in this type of respiration. A perfect opportunity is taken to get the students to carry out a mathematical calculation to compare the yields. Oxygen debt is discussed and related back to the original newspaper article. Finally, anaerobic respiration in plants and yeast is considered in terms of fermentation and the word and symbol equation is written so that it can be compared to those from animals.
There are regular progress checks throughout the lesson to allow the students to check on their understanding. The lesson has been written for GCSE students but could be used with higher ability KS3 students or A-level students who want a recap before covering the topic in greater detail on their course.
A fully-resourced lesson which looks at the structure of the human heart and its associated vessels and ensures that students know the journey which blood takes through this organ. The lesson includes an engaging lesson presentation (25 slides), a diagram to label and a worksheet to summarise the journey.
The lesson begins with a bit of fun as students see the script to part of an episode from Friends. Students will recognise the alternative definition of the heart and ultimately recall that the function of this organ is to pump blood around the body. Moving forwards, the main task of the lesson involves labelling the four chambers and the blood vessels which bring blood towards and away from the heart. Students are given useful hints along the way to enable them to discover the answers rather than simply being given a finished diagram. Time is taken to look at the valves and discuss their function so that students can understand this role when they encounter them in veins. The lesson concludes with one final task that challenges the students to detail the journey of blood through the heart.
There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
A concise lesson presentation (22 slides) that looks at how catalysts affect the rate of a chemical reaction and focuses on the Science behind this topic. The lesson begins with the introduction of the key term and its definition to ensure that students are confident in the use of a catalyst in the correct context. More key terms like “activation energy” are introduced and links made to related Chemistry topics such as endothermic and exothermic reactions. Students are challenged to show how the activation energy will differ in the presence of a catalyst. The rest of the lesson involves a practical and the collection of results so that students can compare their data against the theory which was introduced earlier in the lesson.
This lesson has been designed for GCSE students.
This is a highly-detailed and fully-resourced lesson which covers the detail of specification point 5.1.2 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the roles of the hypothalamus, posterior pituitary, ADH and the collecting duct in the control of the water potential of the blood. Students learnt about the principles of homeostasis and negative feedback in an earlier module, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics.
The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other uploaded lessons in module 5.1.2 which include the structure of the nephron, ultrafiltration and selective reabsorption.
This fully-resourced lesson has been designed to cover point 8.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification that states that students should know the structures and function of synapses in nerve impulse transmission. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters are considered to provide the students with a wider view of this topic and to make links to specification point 8.15
The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The final part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission.
Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics.
This detailed lesson looks at the structure and function of the motor neurones that form the autonomic nervous system and is responsible for automatic responses. The engaging PowerPoint and accompanying resource have both been designed to cover the second part of point 5.1.5 (g) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the functional organisation of the motor system into somatic and autonomic systems. Students will discover that this system is further divided into sympathetic and parasympathetic systems to control different aspects of a particular involuntary response.
The lesson begins with a focus on the types of effectors that will be connected to the CNS by autonomic motor neurones. Students will learn that effectors which are not under voluntary control such as cardiac muscle, smooth muscle and glands will be innervated by these neurones. Moving forwards, a quick quiz competition is used to introduced ganglia as a structure which connects the two or more neurones involved in the cell signalling between the CNS and the effector. This leads into the discovery of the two divisions and students will begin to recognise the differences between the sympathetic and parasympathetic systems based on function but also structure. The remainder of the lesson looks at the differing effects of these two systems.
This lesson has been written to tie in with the lesson on the organisation of the mammalian nervous system which covers the first part of specification point 5.1.5 (g)
This fully-resourced lesson explores how glucose as well as the other respiratory substrates, such as lipids and proteins, can enter the respiratory pathway and therefore can be respired to produce molecules of ATP. The engaging PowerPoint and accompanying resources have been designed to cover points 12.1 (f) and (g) of the CIE International A-level Biology specification which states that students should be able to explain the relative energy values of carbohydrates, lipids and proteins and be able to determine respiratory quotients from equations.
This lesson has been written to challenge current understanding as well as introduce details of glycolysis, the link reaction and Krebs cycle as these stages have yet to be covered fully. Students will learn that lipids and proteins can be used as respiratory substrates and will recognise the different ways that they enter the respiratory pathway. A quick quiz competition is used to introduce the relative energy value for carbohydrates and students are challenged to predict how the values for lipids and proteins will compare. As a result, students will recognise that a greater number of hydrogen atoms results in a greater availability of protons to form the proton gradient to fuel the production of ATP. The rest of the lesson focuses on the calculation of the respiratory quotient and time is taken to look at how the result can be interpreted to determine which substrates were respired.
Each of the 9 lessons which are included in this bundle have been written to specifically cover the content as detailed in topics 4.1, 4.2 and 4.3 of the AQA A-level Biology specification. The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of genetic information
Lessons which cover the following specification points are included in this bundle:
DNA in prokaryotes and eukaryotes
Genes
Genome, proteome and the structure of RNA
Transcription and splicing
Translation
The genetic code
Gene mutations
Chromosome mutations
Meiosis
If you would like to see the quality of the lessons, download the structure of DNA, RNA and gene mutations lessons as these have been uploaded for free
This fully-resourced lesson explains how the transcription of target genes can be stimulated or inhibited by transcription factors. Both the PowerPoint and the accompanying resources have been designed to cover the first part of point 8.2.2 of the AQA A-level Biology specification and links are continuously made throughout the lesson to the topic of protein synthesis which was covered in topic 4.2.
The lesson begins with a recall of the meaning of the terms genome and proteome so that a discussion can begin on whether a cell wants to express every gene and produce all of the possible proteins all of the time. As the answer to this is no, the idea of transcription factors is introduced. In order to fully understand this topic, students need to recall that the role of the promoter region is to bind RNA polymerase to initiate transcription. Students will learn that the factors have a DNA-binding domain and that some also have ligand-binding domains which allow molecules like hormones to bind. Moving forwards, the students are introduced to a group of substances called DELLA proteins which inhibit plant development. The way that transcription begins once the inhibition by the proteins has been removed is similar to the action of oestrogen and students are able to use this information as a guide during the final task where they have to order the sequence of events that take place once this steroid hormone binds to its transcription factor.
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 7 AQA A-level Biology topics. Many hours of intricate planning has gone into the design of all of the 20 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions.
The following specification points are covered by the lessons within this bundle:
Monomers and polymers
Condensation and hydrolysis reactions
Common monosaccharides
Maltose, sucrose and lactose
The structure and functions of glycogen, starch and cellulose
Biochemical tests using Benedict’s solution for reducing sugars and non-reducing sugars and iodine/potassium iodide for starch
The structure and properties of triglycerides and phospholipids
The emulsion test for lipids
The structure of amino acids
The formation of dipeptides and polypeptides
The levels of protein structure
The biuret test for proteins
Enzymes act as biological catalysts
The induced-fit model of enzyme action
The properties of an enzyme
The effect of temperature on the rate of an enzyme-controlled reaction
The effect of enzyme and substrate concentration on the rate of an enzyme-controlled reaction
The effect of competitive and non-competitive inhibitors on the rate of an enzyme-controlled reaction
The structure of DNA and RNA
The semi-conservative replication of DNA
ATP as the universal energy currency
The properties of water and its importance in Biology
Inorganic ions
Due to the detail of each of these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content.
If you would like to see the quality of the lessons, download the monomers and polymers, polysaccharides, triglycerides, dipeptides and polypeptides and inorganic ions lessons as these have been shared for free
Amino acids are the monomers of polypeptides and this lesson describes their structure and makes links to related topics such as genes and dipeptides. The engaging PowerPoint has been designed to cover the first part of point 1.4.1 of the AQA A-level Biology specification and provides a clear introduction to the following lesson on the formation of dipeptides and polypeptides.
The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. The lesson concludes with one more quiz round called LINK TO THE FUTURE where the students will see the roles played by amino acids in the later part of the course such as translation and mineral ions.
The biological molecules topic is incredibly important, not just because it is found near to the start of the course, but also because of its detailed content which must be well understood to promote success with the other 18 CIE International A-level Biology topics. Many hours of intricate planning have gone into the design of all of the 11 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions.
The following specification points are covered by the lessons within this bundle:
Tests for reducing and non-reducing sugars
The iodine test for starch
The emulsion test for lipids
The biuret test for proteins
The ring forms of alpha and beta glucose
The meaning of the terms monomer, polymer, macromolecule, monosaccharide, disaccharide and polysaccharide
The formation of a glycosidic bond by a condensation reaction
The breakage of glycosidic bonds by hydrolysis reactions
The relationship between the molecular structure and functions of a triglyceride
The relationship between the structure and functions of a phospholipid
The structure of an amino acid and the formation and breakage of a peptide bond
The meaning of the different protein structures and the types of bonding that hold these molecules in shape
The molecular structure of haemoglobin and collagen as examples of globular and fibrous proteins
The relationship between the properties and roles of water in living organisms
The lesson on the biuret test for proteins and the emulsion test for lipids also contains a section which can be used for the revision of topics 2.2 and 2.3
Due to the detail of each of these lessons, it is estimated that it will take in excess of 4 weeks of allocated teaching time to cover the content.
If you would like to see the quality of the lessons, download the alpha and beta glucose, phospholipids and haemoglobin and collagen lessons as these have been shared for free
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point 8.2 (vi) of the Edexcel A-level Biology B specification
The lesson includes a step-by-step guide to demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty.
This is the final lesson of topic 8.2 (transfer of genetic information) and links are made throughout the lesson to earlier parts of this topic such as dihybrid inheritance as well as to earlier topics like meiosis
This bundle of 9 lessons describes homeostasis in mammals and plants, explaining the content using real-world examples including osmoregulation and the control of blood glucose and the opening and closing of the stomatal apertures.
The lessons have been planned at length and are filled with a wide variety of tasks which will engage and motivate the students whilst checking on their understanding of the following points from topic 14 of the CIE A-level biology specification (for assessment in 2025-27):
14.1: 1 - 10
14.2: 1 - 4 (ALL)
The quality of the lessons can be experienced through the download of the osmoregulation lesson as this has been shared for free.
This engaging and detailed lesson has been written to cover the content of points 7.6 & 7.7 (The hormonal and barrier methods of contraception) as detailed in the Edexcel GCSE Biology & Combined Science specifications. This is a topic which can be difficult to teach due to the awkwardness of a class or students believing that they already know all of the information without really knowing the detail which is laid out in the specification. With this in mind, a wide range of activities have been included in the lesson to maintain motivation whilst ensuring that this important detail is covered. Students will learn about a range of hormonal methods including oral contraceptives and progesterone patches and how these methods influence the menstrual cycle. Barrier methods are also discussed and their effectiveness considered. Time is taken to look at alternative methods such as abstaining from sexual intercourse before and after ovulation and sterilisation. Due to the clear link to the topic of the menstrual cycle, previous knowledge checks are written into the lesson and challenge the students on their knowledge of FSH, LH, oestrogen and progesterone. There are also mathematical skills check so that students are prepared for the added mathematical element in this course.
This lesson has been written for GCSE-aged students who are studying on the Edexcel GCSE Biology or Combined Science courses but is suitable for younger students who are looking at contraception in their Science lessons
This lesson has been designed to cover the content as detailed in point 2.13 (The structure and function of the nervous system) of the Edexcel GCSE Biology & Combined Science specifications. Consisting of a detailed and engaging PowerPoint (38 slides) and accompanying worksheets, the range of activities will motivate the students whilst ensuring that the content is covered in detail. Students will learn how receptors, sensory neurones, the CNS, motor neurones and effectors are involved in the detection and response to a stimulus. There is a focus on the structure of the sensory and motor neurones and the presence of the myelin sheath in both of these neurones is discussed with relation to the increased speed of conduction. Students will understand that a synapses involve the diffusion of neurotransmitters and allow communication between neurones and they are briefly introduced to relay neurones but these are covered in more detail in the reflexes lesson. Progress checks are included throughout the lesson so that students can assess their understanding of the content and any misconceptions can be addressed whilst quiz competitions, like FROM NUMBERS 2 LETTERS and SAY WHAT YOU SEE, are used to introduce new terms in a fun and memorable way.
This lesson has been written for GCSE-aged students who are studying the Edexcel GCSE Biology or Combined Science specifications but can be used with older students who need to know the key details of the nervous system for their A level course before taking it to greater depths
This lesson has been designed to cover the content in specification point 17.3 (Mitosis) which is part of topic 17 (Inheritance) of the CIE IGCSE Biology specification. A wide range of activities have been written into the lesson to motivate and engage the students whilst ensuring that the following content of both the Core & Supplement sections are covered in detail.
The duplication of chromosomes before mitosis
Mitosis is a form of division that results in genetically identical cells
The important roles of mitosis for living organisms
Stem cells use mitosis before differentiation to produce specialised cells
Understanding checks have been included in the lesson at regular points to allow the students to assess their understanding as well as previous knowledge checks to topics like organelles in animal and plant cells.
This lesson has been designed for GCSE-aged students but is suitable for older students who are studying mitosis at A-level and need to recall the key points