A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This bundle contains 11 fully-resourced lessons which will engage and motivate the students whilst covering the following specification points in topics 7 and 8 of the CIE A-level Biology specification:
TOPIC 7
The structure of xylem vessel elements, phloem sieve tube elements and companion cells
The relationship between the structure and function of xylem vessel elements, phloem sieve tube elements and companion cells
Explain how hydrogen bonding of water molecules is involved with the movement in the xylem by cohesion-tension in transpiration pull and adhesion to cell walls
The pathways and mechanisms by which water and mineral ions are transported from the soil to the xylem and from roots to leaves
Assimilates move between sources and sinks between phloem sieve tubes
The mechanism by which sucrose is loaded into the phloem
The mass flow of phloem sap down a hydrostatic pressure gradient
TOPIC 8
The double, closed circulatory system of a mammal
The relationship between the structure and function of arteries, veins and capillaries
The role of haemoglobin in carrying oxygen and carbon dioxide
The significance of the oxygen dissociation curve of adult haemoglobin at different carbon dioxide concentrations
The external and internal structure of the heart
The cardiac cycle
The role of the SAN, AVN and Purkyne tissue in the initiation and conduction of the heart action
The lesson PowerPoints and accompanying resources contain a wide range of tasks which include exam-style questions with mark schemes, discussion points and quiz competitions that will check on current understanding as well as making links to previously covered topics.
This lesson describes the structure and functions of the adrenal glands, and includes the hormones secreted by the cortex and the medulla. The detailed PowerPoint and accompanying resources have been designed to cover point 5.1.4 (b) of the OCR A-level Biology A specification
This lesson has been planned to closely tie in with the previous lesson on endocrine communication, and specifically the modes of action of peptide and steroid hormones. At the start of the lesson, the students have to use the knowledge acquired in this last lesson to reveal the key term cortex and this leads into the description of the structure of the adrenal glands in terms of the outer region and the inner region known as the medulla.
The main part of the lesson focuses on the range of physiological responses of the organs to the release of adrenaline. Beginning with glycogenolysis, the need for adrenaline to bind to adrenergic receptors is described including the activation of cyclic AMP. A quiz competition is used to introduce other responses including lipolysis, vasodilation, bronchodilation and an increase in stroke volume. Links to previous topics are made throughout the lesson and students are challenged on their knowledge of heart structure and polysaccharides.
The final part of the lesson introduces the three zones of the adrenal cortex and the steroid hormones that they produce along with their functions. Once again, a series of exam-style questions are used to challenge their ability to apply their understanding to an unfamiliar situation and to make biological links and the mark schemes are embedded in the PowerPoint.
This fully-resourced bundle includes 10 detailed PowerPoint lessons and their accompanying worksheets which cover the content as set out in topic 3.4 (Mass transport) of the AQA A-level Biology specification. This topic includes sections on mass transport in animals (3.4.1) and mass transport in plants (3.4.2).
The lessons have been designed to include a wide range of tasks to maintain motivation whilst ensuring that the understanding of the content is constantly checked and links are made to other topics.
The specification points in topic 3.4 which are covered in these lessons are:
The haemoglobins
The role of haemoglobin in the transport of oxygen
The oxyhaemoglobin dissociation curve
The Bohr effect
The general pattern of blood circulation in a mammal
The gross structure of the human heart
The valve movements in the cardiac cycle
The structure of the blood vessels
The formation of tissue fluid
The transport of water in the xylem
The structure of the phloem tissue
Translocation by mass flow
If you would like to see the quality of these lessons, download the arteries, tissue fluid and translocation lessons as these have been uploaded for free
This fully-resourced lesson describes how the release of ADH from the pituitary gland controls mammalian plasma concentration. The engaging PowerPoint and accompanying resources have been designed to cover the detail included in point 9.9 (iv) of the Edexcel A-level Biology B specification and also includes details of the roles of the osmoreceptors in the hypothalamus.
The principles of homeostasis and negative feedback were covered in an earlier lesson in topic 9, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics.
The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work.
All 10 lessons included in this bundle are highly detailed and are fully-resourced. The lesson PowerPoints and their accompanying worksheets contain a wide range of tasks that will engage and motivate the students whilst covering the following specification points as set out in topic 4 of the Edexcel International A-level Biology specification:
The structure and ultrastructure of plant cells
The function of the organelles in plant cells
The structure and function of starch and cellulose
The similarities and differences between the structures, position and functions of sclerenchyma, xylem and phloem
The importance of water and inorganic ions in plants
Understand that classification is a means of organising the variety of life based on relationships between organisms
New taxonomic groupings
The meaning of the terms biodiversity and endemism
Know how biodiversity can be measured within a habitat and within a species
Comparing biodiversity between habitats using the index of diversity
The adaptations of organisms to their environment
Use of the Hardy-Weinberg equation
Changes in allele frequency are the result of mutation and natural selection
Evaluate the methods used by zoos and seed banks in the conservation of endangered species and their genetic diversity
If you would like to sample the quality of lessons in this bundle then download the cellulose & starch and modern-day classification lessons as these have been uploaded for free
This fully-resourced lesson describes the key steps in the process of DNA replication, including the role of DNA polymerase. Both the detailed PowerPoint and accompanying resources have been designed to cover point 2.11 (i) of the Pearson Edexcel A-level Biology A specification and this lesson also explains why this replication is known as semi-conservative in order to prepare the students for the following lesson on Meselson and Stahl’s experiment.
The main focus of this lesson is the role of DNA polymerase in the formation of the growing nucleotide strands but the students will also learn that the hydrogen bonds between nucleotide bases are broken by DNA helicase and that DNA ligase joins the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
All 4 of the lessons that are included in this bundle are fully-resourced and contain a wide range of activities that will motivate and engage the students whilst covering the content as detailed in topic 4 of the CIE A-level Biology specification (Cell membranes and transport).
Exam-style questions which check on current and prior understanding, differentiated tasks, discussion points and quick quiz competitions cover the following specification points:
The fluid mosaic model of membrane structure
The roles of phospholipids, cholesterol, glycoproteins and proteins
The roles of channel and carrier proteins
Simple diffusion
Facilitated diffusion
Active transport, endocytosis and exocytosis
Osmosis and the effect of the movement of water on animal and plant cells
If you would like to sample the quality of these lessons, download the active transport lesson as this has been uploaded for free
This is a fully-resourced REVISION lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Magnetism and electromagnetism) of the AQA GCSE Physics (8463) specification.
The specification points that are covered in this revision lesson include:
Poles of a magnet
Electromagnetism
Fleming’s left hand rule
Electric motors
Loudspeakers
Transformers
Of all of the Physics topics, this one tends to be one of the least well understood. Therefore, time has been taken to not only make this an engaging revision lesson but to go into detail on some of the topics which are commonly assessed in the exams.
This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 9 Edexcel A-level Biology B topics. Many hours of intricate planning has gone into the design of all of the 19 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions.
The following specification points are covered by the lessons within this bundle:
The differences between monosaccharides, disaccharides and polysaccharides
The structure of glucose and ribose
The formation of disaccharides and polysaccharides from monosaccharides
The structure of starch, glycogen and cellulose
The synthesis of a triglyceride
The differences between saturated and unsaturated lipids
The relationship between the structure of lipids and their roles
The structure and properties of phospholipids
The structure of an amino acid
The formation of polypeptides and proteins
The role of ionic, hydrogen and disulphide bonding in proteins
The levels of protein structure
The structure of collagen and haemoglobin
The structure of DNA
The semi-conservative replication of DNA
A gene is a sequence of bases on DNA that codes for an amino acid sequence
The structure of mRNA
The structure of tRNA
The process of transcription
The process of translation
Base deletions, insertions and substitutions as gene mutations
The effect of point mutations on amino acid sequences
The structure of enzymes as globular proteins
The concept of specificity and the induced-fit hypothesis
Enzymes are catalysts that reduce activation energy
Understand how temperature affects enzyme activity
Enzymes catalyse a wide range of intracellular reactions as well as extracellular ones
The role of inorganic ions in plants
The importance of water for living organisms
Due to the detail included in these lessons, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to complete.
If you would like to see the quality of the lessons then download the monosaccharides, disaccharides and polysaccharides, glucose and ribose, triglycerides, structure of DNA and transcription lessons as these have been uploaded for free.
A fully resourced lesson that includes a lesson presentation (31 slides) and a related newspaper story to allow the students to compare the structure and properties of two allotropes of carbon, diamond and graphite. Students are guided through the structures and then challenged to work out how this relates to their respective properties. Time is taken to focus on the comparison between the two in terms of their ability to conduct electricity. A step by step answer is used to explain why diamond cannot conduct electricity so that students can use this when forming their answer for graphite.
This lesson has been designed primarily for GCSE students (14 - 16 year olds) where questions comparing these two substances are common but it is suitable for use with younger students too.
This engaging and fully-resourced lesson looks at the effects of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover the 3rd part of point 7.3 of the AQA A-level Biology specification which states that students should be able to identify each type of selection by its effect on different phenotypes.
The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This method is covered later in topic 7 so this section of the lesson is designed purely to generate changes in numbers of the organisms. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
This fully-resourced lesson focuses on the role of meiosis in ensuring genetic variation through the production of non-identical gametes. The detailed PowerPoint and accompanying resource have been designed to cover point 3.9 of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should be able to describe how crossing over and independent assortment result in genetically unidentical daughter cells.
In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.
This fully-resourced revision lesson allows students to check on their understanding of Linnaeus’s and Woese’s classification systems. The engaging PowerPoint and accompanying resources have been designed to challenge the details of point B6.4 of the AQA GCSE biology and combined science specifications.
The lesson contains a range of tasks including exam-questions and quizzes which provide opportunities for the students to assess their knowledge of kingdom, phylum, class, order, family, genus and species as the classification taxa and to recognise the binomial naming system. The lesson also reminds students that the three domain-system divides the Prokaryote kingdom into Archaea and Bacteria and describes how this system was developed once new evidence was discovered.
As well as testing the content of B6.4, this lesson uses a series of questions to challenge understanding of linked topics which include eukaryotic and prokaryotic cell structures, microscopes, communicable diseases and ecological terms.
This lesson has been planned for revision purposes in the lead up to the GCSE exams or before end of topic tests or mocks.
This extensive lesson describes the structure of the human brain and the functions of its parts. The engaging PowerPoint and accompanying resources have been designed to be in line with point 5.1.5 (h) of the OCR A-level biology A specification and therefore covers the gross structure of the human brain and the function of the cerebrum, cerebellum, medulla oblongata, hypothalamus and the pituitary gland.
The lesson begins with a knowledge recall challenge, where the students have to complete the diagram showing the organisation of the nervous system, as covered in the previous lesson. This reminds them that the brain is part of the CNS and also reintroduces the autonomic nervous system which will be useful when describing the medulla oblongata. As this is an extensive lesson covering a lot of detail, it has been planned to contain 5 quiz rounds as part of a competition which will help to maintain engagement whilst checking on their recall and understanding of content. There are also multiple understanding and prior knowledge checks which allow the students to assess their progress against the current topic and to make links to previously covered content. All answers to these knowledge checks are embedded into the PowerPoint.
The lesson describes the structure of the cerebrum as two hemispheres and then considers the localisation of function of the 4 lobes of the cerebral cortex. It moves onto the cerebellum, focusing on its role of perfecting and coordinating movement, and explains how this is achieved through neural connections with the cerebrum. The control of heart rate by the medulla oblongata is described before the lesson concludes with an exploration of the connections between the hypothalamus and the two lobes of the pituitary gland, specifically in the mechanisms of osmoregulation and thermoregulation.
Two of the worksheets have been modified to allow students of different understanding levels to access the work.
It is likely that this lesson will take between 2 - 3 hours of teaching time, but sections can be edited and removed if the teacher doesn’t want to look at a particular structure in that detail at this stage of study.
This lesson describes the mechanism of breathing, including the roles of the ribcage, intercostal muscles and the diaphragm. The content of the engaging PowerPoint has been designed to cover the details of the fifth part of specification point 3.2 of the AQA A-level Biology specification and introduces the antagonistic interaction of the external and internal intercostal muscles.
The lesson begins with a focus on the diaphragm and students will discover that this sheet of muscle is found on the floor of the thoracic cavity. Whilst planning the lesson, it was deemed important to introduce this region of the body at an early stage because the best descriptions will regularly reference the changes seen in this cavity. As the mechanism of inhalation is a cascade of events, the details of this process are covered in a step by step format using bullet points. At each step, time is taken to discuss the key details which includes an introduction to Boyle’s law that reveals the inverse relationship between volume and pressure. It is crucial that students are able to describe how the actions of the diaphragm, external intercostal muscles and ribcage result in an increased volume of the thoracic cavity and a subsequent decrease in the pressure, which is below the pressure outside of the body. At this point, their recall of the structures of the mammalian gas exchange system is tested, to ensure that they can describe the pathway the air takes on moving into the lungs.
The remainder of the lesson involves a task which challenges the students to describe exhalation and then the accessory muscles involved in forced ventilation are also considered.
This engaging lesson covers the biological classification of a species, phylogenetic classification and the use of the binomial naming system. The PowerPoint and accompanying resources have been designed to cover point 4.5 of the AQA A-level Biology specification which is titled species and taxonomy.
The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a horse and a donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Although the art of courting might be lost on humans in the modern world, the marabou stork is used as an example to show how courtship behaviour is an essential precursor to successful mating in most organisms. Students are encouraged to discuss other examples of courtship behaviour, such as the release of pheromones and birdsong, so that their knowledge and understanding is broad.
Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
The final part of the lesson briefly looks at how advances in genome sequencing and the comparison of common biological molecules has allowed the relationships between organisms to be clarified.
This is a detailed lesson and it is estimated that it will take around 2 hours of A-level teaching time to cover the content and therefore this specification point.
This fully-resourced lesson explains how gel electrophoresis is used to analyse nucleic acids and proteins and explores its applications in forensic science and medical diagnosis. The engaging and detailed PowerPoint and accompanying resource have been written to cover point 19.1 (d) of the CIE International A-level Biology specification
As a whole lesson, each step of the genetic fingerprinting process is covered but with the main focus on gel electrophoresis within this process. Students will be introduced to STRs and will come to recognise their usefulness in human identification as a result of the variability between individuals. Moving forwards, the involvement of the PCR and restriction enzymes are discussed and students are challenged on their knowledge of this process and these substances as they were encountered in a previous lesson. The main section of the lesson focuses on the use of gel electrophoresis to separate DNA fragments (as well as proteins) and the key ideas of separation due to differences in base pair length or molecular mass are discussed and explained. As well as current understanding checks, an application question involving Huntington’s disease is used to challenge their ability to apply their knowledge of the process to an unfamiliar situation. The remainder of the lesson describes how the DNA is transferred to a membrane and hybridisation probes are used to create a pattern on the X-ray film.
Time has been taken to make continuous links to the previous lessons in topic 19.1 as well as those from topic 6 where DNA, RNA and protein synthesis were introduced.
This lesson describes and explains how the contraction of the heart chambers during atrial and ventricular systole and the relaxation during diastole causes blood to flow through the heart. The engaging PowerPoint and accompanying resource have been designed to cover the 2nd point of the “Cardiovascular system at rest” topic in 1.1.b of the OCR A-level PE specification
The students will have already encountered aspects of the cardiovascular system earlier in this section and this lesson aims to build on that knowledge. Students will be introduced to the sequence of events known as the cardiac cycle and will learn that the cycle can be split into three parts, which are atrial systole, ventricular systole and diastole. There is a particular focus on the role of the AV and semi-lunar valves in the control of blood flow and students are challenged to explain how pressure changes cause these valves to open or close. The final task of the lesson involves a quiz round called “RECYCLE THIS?” where the teams have to use their knowledge of the cardiac cycle and the structures of the heart and blood vessels to spot any errors in the description of blood flow through the heart
This fully-resourced lesson describes how the autonomic nervous system controls the heart rate. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 9.8 (i) of the Edexcel A-level Biology B specification which states that students should understand the roles of baroreceptors, chemoreceptors, the cardiac centre in the medulla oblongata and the sympathetic and parsympathetic nerves in the control.
This lesson begins with a prior knowledge check where students have to identify and correct any errors in a passage about the conduction system of the heart. This allows the SAN to be recalled as this structure play an important role as the effector in this control system. Moving forwards, the three key parts of a control system are recalled as the next part of the lesson will specifically look at the range of sensory receptors, the coordination centre and the effector. Students are introduced to chemoreceptors and baroreceptors and time is taken to ensure that the understanding of the stimuli detected by these receptors is complete and that they recognise the result is the conduction of an impulse along a neurone to the brain. A quick quiz is used to introduce the medulla oblongata as the location of the cardiovascular centre. The communication between this centre and the SAN through the autonomic nervous system can be poorly understood so detailed explanations are provided and the sympathetic and parasympathetic divisions compared. The final task challenges the students to demonstrate and apply their understanding by writing a detailed description of the control and this task has been differentiated three ways to allow differing abilities to access the work
This lesson bundle contains 5 detailed lesson PowerPoints and their accompanying resources which have been designed to cover the content of module 5.1.4 (Hormonal communication) of the OCR A-level Biology A specification. They contain a wide variety of tasks which include exam-style questions with displayed mark schemes that challenge the students on their current understanding as well as their ability to make links to previously covered topics.
The following specification points are covered in this bundle:
Endocrine communication by hormones
The structure and functions of the adrenal glands
The histology of the pancreas
The regulation of blood glucose concentration by the release of insulin and glucagon
The control of insulin secretion
The difference between type I and II diabetes mellitus
The potential treatments for diabetes mellitus
If you would like to sample the quality of the lessons in this bundle, then download the endocrine communication lesson as this has been uploaded for free