Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1122k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Starch and glycogen (Edexcel A-level Biology A)
GJHeducationGJHeducation

Starch and glycogen (Edexcel A-level Biology A)

(0)
This detailed and fully-resourced lesson describes the relationship between the structure and function of glycogen and starch. The engaging PowerPoint and accompanying resources have been designed to cover the fourth part of points 1.12 & 1.13 of the Pearson Edexcel A-level Biology A specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. The lesson begins with the CARBOHYDRATE WALL where students have to use their prior knowledge to collect the 9 carbohydrates on show into 3 groups. This results in glycogen, starch and cellulose being grouped together as polysaccharides and the structure and roles of the first two are covered over the course of the lesson. Students will learn how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also allows for spiralling. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses and they learn more about starch. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. The importance of the compact structure for storage is discussed as well as the branched chains of amylopectin acting as quick source of energy when it is needed. The lesson concludes with a question and answer section that guides the students when answering a question about the importance of the lower solubility of the polysaccharides when compared to the monosaccharides.
Formation of disaccharides (Edexcel A-level Biology A)
GJHeducationGJHeducation

Formation of disaccharides (Edexcel A-level Biology A)

(0)
Disaccharides are formed from the condensation of two monosaccharides and this lesson describes the formation of maltose, sucrose and lactose. The concise PowerPoint and accompanying question sheet have been designed to cover the third part of points 1.12 & 1.13 of the Pearson Edexcel A-level Biology A specification but also continually links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as extracellular enzymes, translocation in the phloem and the control of gene expression as exemplified by the Lac Operon. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge
Monosaccharides (Edexcel A-level Biology A)
GJHeducationGJHeducation

Monosaccharides (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the relationship between the structure of monosaccharides and their roles in living organisms. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the second part of points 1.12 & 1.13 of the Pearson Edexcel A-level Biology A specification and looks at alpha-glucose, galactose, fructose, deoxyribose and ribose. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided but students do not need to consider the beta form until topic 4. The remainder of the lesson focuses on the roles of the monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
The difference between monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology A)
GJHeducationGJHeducation

The difference between monosaccharides, disaccharides & polysaccharides (Edexcel A-level Biology A)

(0)
This engaging lesson acts as an introduction to carbohydrates and describes the differences between monosaccharides, disaccharides and polysaccharides. The PowerPoint and accompanying worksheet have been designed to cover the first part of points 1.12 & 1.13 of the Pearson Edexcel A-level Biology A specification and make clear links to the upcoming lessons in this sub-topic on these three main groups of carbohydrates. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. A number of quick quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the first round allows the students to meet some of common monosaccharides. Moving forwards, students will learn that a disaccharide is formed when two of these monomers are joined together and they are then challenged on their knowledge of condensation reactions which were originally encountered during the lesson on water. Students will understand how multiple reactions and multiple glycosidic bonds will result in the formation of a polysaccharide and glycogen and starch are introduced as well as amylose and amylopectin as components of this latter polymer. The final part of the lesson considers how hydrolysis reactions allow polysaccharides and disaccharides to be broken back down into monosaccharides.
The importance of water (Edexcel A-level Biology A)
GJHeducationGJHeducation

The importance of water (Edexcel A-level Biology A)

(1)
Water is very important for living organisms because of its numerous properties and this lesson focuses on its role as a solvent in transport. The engaging and detailed PowerPoint and accompanying worksheet have been designed to cover point 1.2 of the Pearson Edexcel A-level Biology A specification and also explains the importance of the dipole nature for this role in transport. A mathematical theme runs throughout the lesson as students have to match the numbers calculated in the starter task to water statistics, such as the percentage of the volume of blood plasma that is water. This has been included to try to increase the relevance of each property so that it can be described in a biological context. Time is taken at the beginning of the lesson to describe the structure of water in terms of the covalent bonds between the oxygen and hydrogen atoms as well as the hydrogen bonds which form between molecules because of its polarity. Students will understand how water is a solvent which means that it is critical for transport in animals, a topic covered in the next few lessons but also for transport in plants as discussed in topic 4. The high heat capacity and latent heat of vaporisation of water is also discussed and explained through the examples of thermoregulation and the maintenance of a stable environment for aquatic animals. The final part of the lesson focuses on the involvement of water in condensation and hydrolysis reactions, two reactions which must be well understood for topic 1 and 2 and the formation and breakage of polysaccharides, lipids, polypeptides and polynucleotides.
Topic 1: Biological molecules (AQA A-level Biology)
GJHeducationGJHeducation

Topic 1: Biological molecules (AQA A-level Biology)

20 Resources
The biological molecules topic is incredibly important, not just because it is found at the start of the course, but also because of its detailed content which must be well understood to promote success with the other 7 AQA A-level Biology topics. Many hours of intricate planning has gone into the design of all of the 20 lessons that are included in this bundle to ensure that the content is covered in detail, understanding is constantly checked and misconceptions addressed and that engagement is high. This is achieved through the wide variety of tasks in the PowerPoints and accompanying worksheets which include exam-style questions with clear answers, discussion points, differentiated tasks and quick quiz competitions. The following specification points are covered by the lessons within this bundle: Monomers and polymers Condensation and hydrolysis reactions Common monosaccharides Maltose, sucrose and lactose The structure and functions of glycogen, starch and cellulose Biochemical tests using Benedict’s solution for reducing sugars and non-reducing sugars and iodine/potassium iodide for starch The structure and properties of triglycerides and phospholipids The emulsion test for lipids The structure of amino acids The formation of dipeptides and polypeptides The levels of protein structure The biuret test for proteins Enzymes act as biological catalysts The induced-fit model of enzyme action The properties of an enzyme The effect of temperature on the rate of an enzyme-controlled reaction The effect of enzyme and substrate concentration on the rate of an enzyme-controlled reaction The effect of competitive and non-competitive inhibitors on the rate of an enzyme-controlled reaction The structure of DNA and RNA The semi-conservative replication of DNA ATP as the universal energy currency The properties of water and its importance in Biology Inorganic ions Due to the detail of each of these lessons, it is estimated that it will take in excess of 2 months of allocated teaching time to cover the content. If you would like to see the quality of the lessons, download the monomers and polymers, polysaccharides, triglycerides, dipeptides and polypeptides and inorganic ions lessons as these have been shared for free
Dipeptides & polypeptides (AQA A-level Biology)
GJHeducationGJHeducation

Dipeptides & polypeptides (AQA A-level Biology)

(0)
This detailed lesson describes the formation of dipeptides & polypeptides and the relationship between the structure and roles of proteins in living organisms. Both the engaging PowerPoint and accompanying resources have been designed to cover the second part of point 1.4.1 of the AQA A-level Biology specification. The start of the lesson focuses on the formation of a peptide bond during a condensation reaction so that students can understand how a dipeptide is formed and therefore how a polypeptide forms when multiple reactions occur. The main part of the lesson describes the different levels of protein structure. A step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. Students will see the differences between globular and fibrous protein and again biological examples are used to increase relevance. The lesson concludes with one final quiz round called STRUC by NUMBERS where the students have to use their understanding of the protein structures to calculate a numerical answer.
Amino acids (AQA A-level Biology)
GJHeducationGJHeducation

Amino acids (AQA A-level Biology)

(1)
Amino acids are the monomers of polypeptides and this lesson describes their structure and makes links to related topics such as genes and dipeptides. The engaging PowerPoint has been designed to cover the first part of point 1.4.1 of the AQA A-level Biology specification and provides a clear introduction to the following lesson on the formation of dipeptides and polypeptides. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. The lesson concludes with one more quiz round called LINK TO THE FUTURE where the students will see the roles played by amino acids in the later part of the course such as translation and mineral ions.
Inorganic ions (AQA A-level Biology)
GJHeducationGJHeducation

Inorganic ions (AQA A-level Biology)

(5)
This detailed and engaging lesson describes how the roles of hydrogen, iron, sodium and phosphate ions are based on their properties. The PowerPoint and accompanying worksheet have been designed to cover point 1.8 of the AQA A-level Biology specification. The lesson begins with a made-up round of POINTLESS where students have to use their prior knowledge of topic 1 to identify four biological molecules. All four of these molecules are connected by a phosphate group and this acts to remind students that phosphate ions are a component of both DNA and ATP. Moving forwards, the rest of the lesson explores the role of hydrogen ions in pH, iron in haemoglobin and sodium in the co-transport of glucose and amino acids. The lesson has been written so that links can be made to upcoming topics including the regulation of heart rate, transport of oxygen and selective reabsorption in the nephron of the kidney.
Properties of water (AQA A-level Biology)
GJHeducationGJHeducation

Properties of water (AQA A-level Biology)

(0)
This fully-resourced lesson describes how the different properties of water make this biological molecule incredibly important in Biology. The engaging PowerPoint and accompanying worksheets have been designed to cover point 1.7 of the AQA A-level Biology specification. Hydrolysis reactions have been a recurring theme throughout topic 1, so the start of this lesson challenges the students to recognise the definition when only a single word is shown: water. Students will also recall the meaning of a condensation reaction. Moving forwards, the rest of the lesson focuses on the relationship between the structure and properties of water, beginning with its role as an important solvent. The lesson has been specifically written to make links to future topics and this is exemplified by the transport of water along the xylem in plants. A quick quiz round is used to introduce cohesion and tension so students can understand how the column of water is able to move along this vascular tissue without interruption. The next section focuses on the high latent heat of vaporisation and heat capacity of water and these properties are put into biological context using thermoregulation and the maintenance of a stable environment for aquatic animals. The lesson finishes with an explanation of the polar nature of water, a particularly important property that needs to be well understood for a number of upcoming topics, such as cell membranes.
ATP (AQA A-level Biology)
GJHeducationGJHeducation

ATP (AQA A-level Biology)

(1)
Adenosine triphosphate is the universal energy currency and this lesson focuses on the structure of this nucleotide derivative. The PowerPoint has been designed to cover point 1.6 of the AQA A-level Biology specification and also explains how ATP must be hydrolysed to release energy and then re-synthesised during respiration and photosynthesis. As the previous sub-topic concerned the structure of DNA and RNA, the start of this lesson challenges the students on their knowledge of these polynucleotides so that they can recognise that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of active transport and skeletal muscle contraction are used as these are covered in greater detail in topic 2 and 6. The final part of the lesson considers how ATP must be re-synthesised and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively.
DNA replication (AQA A-level Biology)
GJHeducationGJHeducation

DNA replication (AQA A-level Biology)

(0)
This fully-resourced lesson describes the process of DNA replication and explains how this ensures genetic continuity between generations. Both the detailed PowerPoint and accompanying resources have been designed to cover point 1.5.2 of the AQA A-level Biology specification and also explains why it is known as semi-conservative. The main focus of this lesson is the roles of DNA helicase in the breaking the hydrogen bonds between nucleotide bases and DNA polymerase in forming the growing nucleotide strands. Students are also introduced to DNA ligase to enable them to understand how this enzyme functions to join the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
Structure of DNA & RNA (AQA A-level Biology Topic 1)
GJHeducationGJHeducation

Structure of DNA & RNA (AQA A-level Biology Topic 1)

(0)
This detailed and engaging lesson describes the structural similarities and differences between DNA and RNA. The PowerPoint and accompanying worksheet containing exam-style questions have been designed to cover point 1.5.1 of the AQA A-level Biology specification. In the first lesson of topic 1, the students were introduced to a number of monomers which included a nucleotide. In line with this, the start of the lesson challenges them to recognise the key term nucleotide when only the letters U, C and T are shown. The next part of the lesson describes the structure of a DNA nucleotide and an RNA nucleotide so that the pentose sugar and the bases adenine, cytosine and guanine can be recognised as similarities whilst deoxyribose and ribose and thymine and uracil are seen as the differences. Time is taken to discuss how a phosphodiester bond is formed between adjacent nucleotides and their prior knowledge and understanding of condensation reactions is tested through a series of questions. Students are then introduced to the purine and pyrimidine bases and this leads into the description of the double-helical structure of DNA and the hydrogen bonds between complementary bases. The final section of the lesson describes the structure of mRNA, tRNA and rRNA and students are challenged to explain why this single stranded polynucleotide is shorter than DNA In addition to the current understanding and prior knowledge checks, a number of quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the final round acts as a final check on the structures of DNA and RNA.
Phospholipids (AQA A-level Biology)
GJHeducationGJHeducation

Phospholipids (AQA A-level Biology)

(0)
This engaging lesson describes the relationship between the structure and properties of a phopholipid and explains the link to its role in membranes. The PowerPoint has been designed to cover the second part of point 1.3 of the AQA A-level Biology specification and includes constant references to the previous lesson on triglycerides. The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called FAMILY AFFAIR, challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the bilayer which is critical for the lesson in topic 2 on the fluid mosaic model. The final part of the lesson explains how both facilitated diffusion and active transport mean that proteins are found floating in the cell membrane and this also helps to briefly prepare the students for upcoming topic 2 lessons.
Triglycerides (AQA A-level Biology)
GJHeducationGJHeducation

Triglycerides (AQA A-level Biology)

(1)
This fully-resourced lesson describes the relationship between the structure and properties of triglycerides and considers their roles in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point 1.3 of the AQA A-level Biology specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from topic 1.2 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Polysaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Polysaccharides (AQA A-level Biology)

(1)
This detailed and fully-resourced lesson describes the relationship between the structure and function of the polysaccharides: glycogen, starch and cellulose. The engaging PowerPoint and accompanying resources have been designed to cover the third part of point 1.2 of the AQA A-level Biology specification and clear links are also made to the previous lessons in this topic where the monosaccharides and disaccharides were introduced. By the end of this lesson, students should understand how key structural features like the 1 - 4 and 1 - 6 glycosidic bonds and the hydrogen bonds dictate whether the polysaccharide chain is branched or unbranched and also whether it spirals or not. Following the description of the structure of glycogen, students are challenged to design an exam question in the form of a comparison table so that it can be completed as the lesson progresses once they learn more about starch and cellulose. This includes a split in the starch section of the table so that the differing structures and properties of amylose and amylopectin can be considered. In the final part of the lesson, time is taken to focus on the formation of cellulose microfibrils and macrofibrils to explain how plant cells have the additional strength needed to support the whole plant. Due to the detail included in this lesson, it is estimated that it will take in excess of 2 hours of allocated teaching time to complete
Disaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Disaccharides (AQA A-level Biology)

(0)
Disaccharides are formed from the condensation of two monosaccharides and this lesson describes the formation of maltose, sucrose and lactose. The PowerPoint and accompanying question sheet have been designed to cover the second part of point 1.2 of the AQA A-level Biology specification but also make links to the previous lesson on monosaccharides when considering the different components of these three disaccharides. The first section of the lesson focuses on a prefix and a suffix so that the students can recognise that the names of the common disaccharides end in -ose. In line with this, a quick quiz round is used to introduce maltose, sucrose and lactose before students are challenged on their prior knowledge as they have to describe how condensation reactions and the formation of glycosidic bonds were involved in the synthesis of each one. The main task of the lesson again challenges the students to recall details of a previous lesson as they have to identify the monomers of each disaccharide when presented with the displayed formula. Time is taken to show how their knowledge of these simple sugars will be important in later topics such as digestion, translocation in the phloem and the Lac Operon in the control of gene expression. The lesson finishes with two exam-style questions where students have to demonstrate and apply their newly acquired knowledge
Monosaccharides (AQA A-level Biology)
GJHeducationGJHeducation

Monosaccharides (AQA A-level Biology)

(0)
Monosaccharides are the monomers from which larger carbohydrates are formed and this lesson describes their structure and roles in living organisms. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the first part of point 1.2 of the AQA A-level Biology specification and looks at alpha-glucose, beta-glucose, galactose, fructose, deoxyribose and ribose. The lesson begins with a made-up round of the quiz show POINTLESS, where students have to try to identify four answers to do with carbohydrates. In doing so, they will learn or recall that these molecules are made from carbon, hydrogen and oxygen, that they are a source of energy which can sometimes be rightly or wrongly associated with obesity and that the names of the three main groups is derived from the Greek word sakkharon. Using the molecular formula of glucose as a guide, students will be given the general formula for the monosaccharides and will learn that deoxyribose is an exception to the rule that the number of carbon and oxygen atoms are equal. Moving forwards, students have to study the displayed formula of glucose for two minutes without being able to note anything down before they are challenged to recreate what they saw in a test of their observational skills. At this point of the lesson, the idea of numbering the carbons is introduced so that the different glycosidic bonds can be understood in an upcoming lesson as well as the recognition of the different isomers of glucose. The difference between alpha and beta-glucose is provided and students are again challenged to draw a molecule of glucose, this time for the beta form. The remainder of the lesson focuses on the roles of the 6 monosaccharides and the final task involves a series of application questions where the students are challenged to suggest why ribose could be considered important for active transport and muscle contraction
Monomers and polymers (AQA A-level Biology)
GJHeducationGJHeducation

Monomers and polymers (AQA A-level Biology)

(2)
This lesson introduces monomers, polymers, condensation and hydrolysis reactions and chemical bonds to prepare students for the rest of topic 1 (biological molecules). The PowerPoint and accompanying worksheet cover point 1.1 of the AQA A-level Biology course, and as this is likely to be the very first lesson that the students encounter, the range of engaging tasks have been specifically designed to increase the likelihood of the key points and fundamentals being retained. Monomers were previously met at GCSE and so the beginning of the lesson focuses on the recall of the meaning of this key term before the first in a series of quiz rounds is used to introduce nucleotides, amino acids and monosaccharides as a few of the examples that will be met in this topic. Dipeptides and disaccharides are introduced as structures containing 2 amino acids or sugars respectively and this is used to initiate a discussion about how monomers need to be linked together even more times to make the larger chains known as polymers. At this point in the lesson, the students are given the definition of a condensation reaction and then challenged to identify where the molecule of water is eliminated from when two molecules of glucose join. A series of important prefixes and suffixes are then provided and students use these to predict the name of the reaction which has the opposite effect to a condensation reaction - a hydrolysis reaction. Links to upcoming lessons are made throughout the PowerPoint to encourage students to begin to recognise the importance of making connections between topics.
Structure of nucleotides (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of nucleotides (CIE International A-level Biology)

(0)
This detailed lesson describes the structure of a nucleotide including the structure of the phosphorylated nucleotide, ATP. The engaging PowerPoint has been designed to cover point (a) of topic 6.1 as detailed in the CIE International A-level Biology specification and links are made throughout to earlier topics such as biological molecules as well as to upcoming topics like DNA structure and replication. Students were introduced to the term monomer and nucleotide in topic 2, so the start of the lesson challenges them to recognise this latter term when only the letters U, C and T are shown. This has been designed to initiate conversations about why only these letters were used so that the nitrogenous bases can be discussed later in greater detail. Moving forwards, students will learn that a nucleotide is the monomer to a polynucleotide and that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are two examples of this type of polymer. The main part of the lesson has been filled with various tasks that explore the structural similarities and structural differences between DNA and RNA. This begins by describing the structure of a nucleotide as a phosphate group, a pentose sugar and a nitrogenous base. Time is taken to consider the details of each of these three components which includes the role of the phosphate group in the formation of a phosphodiester bond between adjacent nucleotides on the strand. At this point students are challenged on their understanding of condensation reactions and have to identify how the hydroxyl group associated with carbon 3 is involved along with the hydroxyl group of the phosphoric acid molecule. A number of quiz rounds are used during this lesson, as a way to introduce key terms in a fun and memorable way. One of these rounds introduces adenine and guanine as the purine bases and thymine, cytosine and uracil as the pyrimidine bases and the students are shown that their differing ring structures can be used to distinguish between them. The remainder of the lesson focuses on ATP as a phosphorylated nucleotide and links are made to the hydrolysis of this molecule for energy driven reactions in cells such as active transport