Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Structure of plant cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Structure of plant cells (Edexcel Int. A-level Biology)

(0)
This lesson describes the structure and ultrastructure of plant cells to allow students to compare this structure against animal cell structure. The detailed PowerPoint and accompanying resources have been designed to cover points 4.1 (i) & (ii) in unit 2 of the Edexcel International A-level Biology specification and also describes the functions of the cell wall, chloroplast, amyloplast, vacuole, tonoplast, plasmodesmata, pits and middle lamella The lesson begins with a task called REVERSE GUESS WHO which will challenge the students to recognise a particular organelle from a description of its function. This will remind students that plant cells are eukaryotic and therefore contain a cell-surface membrane, a nucleus (+ nucleolus), a mitochondria, a Golgi apparatus, ribosomes and rough and smooth endoplasmic reticulum like the animal cells. Moving forwards, the next part of the lesson focuses on the relationship between the structure and function of the vacuole, chloroplast, plasmodesmata and cellulose cell wall. When considering the vacuole, key structures such as the tonoplast are described as well as critical functions including the maintenance of turgor pressure. A detailed knowledge of the structure of the chloroplast at this early stage of their A-level studies will increase the likelihood of a clear understanding of photosynthesis when covered in topic 5. For this reason, time is taken to consider the light-dependent and light-independent reactions and to explain how these stages are linked. Students will learn that chloroplasts and amyloplasts can contain stores of starch so an opportunity is taken to challenge them on their knowledge of this polysaccharide as it was covered in topic 1. The final task challenges them to recognise descriptions of the cell wall, chloroplast, amyloplasts, vacuole, tonoplast and plasmodesmata which will leave 2 remaining which describe the pits and middle lamella.
Sclerenchyma, xylem and phloem (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Sclerenchyma, xylem and phloem (Edexcel Int. A-level Biology)

(0)
This lesson describes the similarities and differences between the structure, position and function of the xylem, phloem and the sclerenchyma fibres. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.5 in unit 2 of the Edexcel International A-level Biology specification. The lessons begins by challenging the students to identify the substances that a plant needs for the cellular reactions, where they are absorbed and where these reactions occur in a plant. The aim of this task is to get the students to recognise that water and mineral ions are absorbed in the roots and needed in the leaves whilst the products of photosynthesis are in the leaves and need to be used all over the plant. Students will be reminded that the xylem and phloem are part of the vascular system responsible for transporting these substances and then the rest of the lesson focuses on linking structure to function. A range of tasks which include discussion points, exam-style questions and quick quiz rounds are used to describe how lignification results in the xylem as a hollow tube of xylem cells to allow water to move as a complete column. They will also learn that the narrow diameter of this vessel allows capillary action to move water molecules up the sides of the vessel. The same process is used to enable students to understand how the structures of the companion cells allows assimilates to be loaded before being moved to the sieve tube elements through the plasmodesmata. The final part of the lesson introduces the sclerenchyma tissue as part of the vascular bundle and along with the structure and function, the students will observe where this tissue is found in the stem in comparison to the xylem and phloem. It is estimated that it will take in excess of 2 hours of A-level teaching time to cover the detail which has been written into this lesson
Adaptations of organisms (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Adaptations of organisms (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson provides examples of anatomical, behavioural and physiological adaptations of organisms to their environment. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.19 in unit 2 of the Edexcel International A-level Biology specification and also describes the concept of a niche and makes continual links to related topics such as natural selection A quick quiz competition at the start of the lesson introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy.
Hardy-Weinberg equation, mutation & natural selection (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg equation, mutation & natural selection (Edexcel Int. A-level Biology)

(0)
This lesson describes how the Hardy-Weinberg equation can identify changes in allele frequency that can be the result of mutation and natural selection. The detailed PowerPoint and accompanying resources have been designed to cover points 4.20 (i) & (ii) of the Edexcel International A-level Biology specification The lesson begins with a focus on the equation to ensure that the students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately and then students are given the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged The rest of the lesson focuses on describing how the mutations which create the variation needed for natural selection to occur can be given as reasons for any change in allele frequency. 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time.
Secondary immune response (Edexcel A-level Biology B)
GJHeducationGJHeducation

Secondary immune response (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the role of memory cells in the secondary immune response. The PowerPoint and accompanying resources have been designed to cover specification point 6.7 (iv) of the Edexcel A-level Biology B specification but also contains a detailed description of the structure and function of antibodies and therefore covers this part of 6.7 (ii) As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link the immune responses and antibodies together in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
Roles of glycolysis (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Roles of glycolysis (Edexcel Int. A-level Biology)

(0)
This lesson describes the roles of glycolysis in aerobic and anaerobic respiration and links to the upcoming lessons on the link reaction and lactate formation. The engaging PowerPoint and accompanying resources have been designed to cover point 7.2 as detailed in the Edexcel International A-level Biology specification and includes details of the phosphorylation of the hexoses, the production of ATP by substrate-level phosphorylation, reduced NAD, pyruvate and lactate The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses, the breakdown into GP and the production of the ATP, reduced coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed
Structure of the mammalian kidney (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Structure of the mammalian kidney (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes the gross and microscopic structure of the mammalian kidney. The engaging PowerPoint and accompanying resource have been designed to cover point 7.18 of the Edexcel International A-level Biology specification. The lesson was designed to tie in with the upcoming kidney lessons (7.19 - 7.21) on ultrafiltration, selective reabsorption and the control of mammalian plasma concentration and a common theme runs throughout to allow students to build their knowledge gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption.
The action & specificity of enzymes (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The action & specificity of enzymes (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the mechanism of action of enzymes and explains how their specificity is related to their 3D structure. The engaging PowerPoint and accompanying resources have been designed to cover points 2.7 (i), (ii) and (iii) in unit 1 of the Edexcel International A-level Biology specification and introduces intracellular and extracellular enzymes where these proteins act to reduce the activation energy. The lesson has been specifically planned to tie in with related topics that were previously covered such as protein structure, globular proteins and intracellular enzymes. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication
Urea production & ultrafiltration (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Urea production & ultrafiltration (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes how urea is produced from excess amino acids and then removed from the bloodstream by ultrafiltration. The PowerPoint and accompanying resources have been designed to cover point 7.19 of the Edexcel International A-level Biology specification. The first part of the lesson describes how deamination and the ornithine cycle forms urea. Although the students are not required to know the details of the cycle, it is important that they are aware of how the product of deamination, ammonia, is converted into urea (and why). Moving forwards, the rest of the lesson has been written to allow the students to discover ultrafiltration as a particular function of the nehron and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem
Selective reabsorption (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Selective reabsorption (Edexcel Int. A-level Biology)

(0)
This lesson describes how solutes are selectively reabsorbed in the proximal tubule. The PowerPoint and accompanying resource have been designed to cover the first part of specification point 7.20 of the Edexcel International A-level Biology specification and builds on the knowledge gained in the previous lessons on the microscopic structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water.
Respiration produces ATP (AQA A-level Biology)
GJHeducationGJHeducation

Respiration produces ATP (AQA A-level Biology)

(0)
This lesson describes how respiration produces ATP by substrate-level and oxidative phosphorylation. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 7 lessons which have been designed to cover the detailed content of point 5.2 (RESPIRATION) of the AQA A-level Biology specification. As the first lesson in this sub-topic, it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Students met phosphorylation in topic 5.1 when considering the light-dependent reactions of photosynthesis and their knowledge of the production of ATP in this plant cell reaction is called on a lot in this lesson to show the similarities. The students are also tested on their recall of the structure and function of ATP, as covered in topic 1.6, through a spot the errors task. By the end of the lesson, the students will be able to name and describe the different types of phosphorylation and will know that ATP is produced by substrate-level phosphorylation in glycolysis and the Krebs cycle and by oxidative phosphorylation in the final stage of aerobic respiration with the same name.
Energy, phosphorylation and ATP (CIE A-level Biology)
GJHeducationGJHeducation

Energy, phosphorylation and ATP (CIE A-level Biology)

(0)
This lesson outlines the need for energy in living organisms, and describes how ATP is formed by phosphorylation in respiration and photosynthesis. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover points 12.1 (a, b, c & e) of the CIE A-level Biology specification but can be used as a revision of topics 1, 4 and 6 as the students knowledge of cell structure, membrane transport and ATP is constantly challenged. As this is the first lesson in topic 12 (respiration), it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Photophosphorylation is also introduced so students are prepared for the light-dependent reaction of photosynthesis in topic 13. The main focus of the start of the lesson is the demonstration of the need for energy in a variety of reactions that occur in living organisms. Students met ATP in topics 1 and 6, so a spot the errors task is used to check on their recall of the structure and function of this molecule. This will act to remind them that the release of energy from the hydrolysis of ATP can be coupled to energy-driven reactions in the cell such as active transport and a series of exam-style questions are used to challenge them on their knowledge of this form of membrane transport. They will also see how energy is needed for protein synthesis and DNA replication and the maintenance of resting potential, before more questions challenge them to apply their knowledge of cell structure and transport to explain how it is needed during the events at a synapse. The rest of the lesson focuses on the production of ATP by substrate-level, oxidative and photophosphorylation and the students will learn when ATP is formed by each of these reactions and will see how the electron transport chain in the membranes in the mitochondria and chloroplast is involved
Chemical control in mammals (Edexcel A-level Biology B)
GJHeducationGJHeducation

Chemical control in mammals (Edexcel A-level Biology B)

(0)
This lesson describes the principles of hormone production by endocrine glands and the two modes of action on target cells. The detailed PowerPoint and accompanying resources have been primarily designed to cover points 9.2 (i) & (ii) of the Edexcel A-level Biology B specification but can also be used as a revision tool to check on their knowledge of topics like biological molecules and transcription factors Students should have a base knowledge of the endocrine system from GCSE so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is described to allow students to understand how the activation of cyclic AMP triggers a cascade of events on the inside of the cell. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen.
Topic 9: Control systems (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 9: Control systems (Edexcel A-level Biology B)

15 Resources
This bundle contains 15 lessons which are engaging and highly detailed in order to cover the difficult content as set out in topic 9 (Control systems) of the Edexcel A-level Biology B specification. The lesson PowerPoints and accompanying resources contain a wide variety of tasks which cover the following specification points: Homeostasis is the maintenance of a state of dynamic equilibrium The importance of maintaining pH, temperature and water potential in the body The meaning of negative feedback and positive feedback control The principles of hormone production by endocrine glands The two main modes of action in hormones The division of the autonomic nervous system into the sympathetic and parasympathetic systems The transport of sodium and potassium ions in a resting potential The formation of an action potential and the propagation along an axon Saltatory conduction The function of synapses The formation and effects of excitatory and inhibitory postsynaptic potentials The structure of the human retina The role of rhodopsin The distribution of rods and cone cells The control of heart rate by the autonomic nervous system The gross and microscopic structure of the kidney The production of urea in the liver and its removal from the blood by ultrafiltration Selective reabsorption in the proximal tubule Control of mammalian plasma concentration The differences between ectotherms and endotherms The regulation of temperature by endotherms If you would like to sample the quality of this lesson bundle, then download the homeostasis, resting and action potentials and the formation of urea and ultrafiltration lessons as these have been uploaded for free.
Neuronal & hormonal communication (OCR A-level Biology)
GJHeducationGJHeducation

Neuronal & hormonal communication (OCR A-level Biology)

10 Resources
This lesson bundle contains 10 lesson PowerPoints, which are highly detailed, and along with their accompanying resources have been designed to cover the content of modules 5.1.3 & 5.1.4 of the OCR A-level Biology A specification, titled neuronal communication and hormonal communication. Each lesson contains a wide range of tasks, that include exam-style questions with mark schemes written into the PowerPoint that students can use to assess their understanding of the current topic as well as previously covered topics. There are also differentiated tasks, discussion points and quick quiz competitions to introduce key values and terms in a fun and memorable way. This lesson bundle covers the following specification points in modules 5.1.3 & 5.1.4: The roles of mammalian sensory receptors in converting different types of stimuli into nerve impulses The structure and functions of sensory, motor and relay neurones The generation and transmission of nerve impulses in mammals The structure and roles of synapses in neurotransmission Endocrine communication by hormones The structure and functions of the adrenal glands The histology of the pancreas The regulation of blood glucose concentration The differences between diabetes mellitus type I and II The potential treatments for diabetes mellitus If you would like to sample the quality of the lessons in this bundle, then download the nerve impulse and endocrine communication lessons as these have been uploaded for free.
Testing for reducing sugars & starch (AQA A-level Biology)
GJHeducationGJHeducation

Testing for reducing sugars & starch (AQA A-level Biology)

(0)
This lesson describes the tests that detect reducing and non-reducing sugars and starch using Benedict’s solution and iodine/potassium iodide. The PowerPoint and accompanying resource are part of the last lesson in a series of 4 lessons which have been designed to cover the content of topic 1.2 (Carbohydrates) of the AQA A-level Biology specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the two tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The rest of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix.
Testing for carbohydrates (CIE A-level Biology)
GJHeducationGJHeducation

Testing for carbohydrates (CIE A-level Biology)

(0)
This lesson describes the methods used to test for reducing and non-reducing sugars and starch using Benedict’s solution and iodine/potassium iodide. The PowerPoint and accompanying resource are part of the first lesson in a series of 2 which have been designed to cover the content of point 2.1 (a) of the CIE A-level Biology specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test to allow the students to understand that the two tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests during their studies at a lower level so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions are included at appropriate points to ensure that understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The rest of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix. As this is the first lesson in topic 2 (Biological molecules), students are yet to learn about the structure and function of the carbohydrates which these tests detect. Therefore, included in the PowerPoint are numerous “LINK TO THE FUTURE” slides, where important details about the structure and function of the monosaccharides, disaccharides and polysaccharides are introduced.
Topic 1.4: Proteins (AQA A-level Biology)
GJHeducationGJHeducation

Topic 1.4: Proteins (AQA A-level Biology)

8 Resources
All 8 of the lessons that are included in this lesson bundle are highly detailed and will engage and motivate the students whilst covering the content of topic 1.4 of the AQA A-level Biology specification. With proteins playing critical roles in a wide range of living organisms, a clear understanding of the structure and functions of these biological molecules is important for all of the other topics. The following specification points are covered by the lessons in this bundle: The general structure of an amino acid A condensation reaction between two amino acids forms a peptide bond The formation of dipeptides and polypeptides The role of the tertiary structure bonds in the structure of a protein The variety of functions of proteins in living organisms The relationship between protein structure and function The biuret test for proteins Enzymes lower the activation energy of the reaction it catalyses The induced fit model of enzyme action The specificity of enzymes The effects of temperature, pH, enzyme and substrate concentration and inhibitors on the rate of enzyme-controlled reactions If you would like to sample the quality of lessons in this bundle, then download the dipeptides & polypeptides lesson and the biuret test lesson as these have been uploaded for free
Testing for proteins, sugars, starch and lipids (OCR A-level Biology)
GJHeducationGJHeducation

Testing for proteins, sugars, starch and lipids (OCR A-level Biology)

(0)
This lesson describes the chemical tests for proteins, reducing and non-reducing sugars, starch and lipids and explains how to interpret the results. The PowerPoint and accompanying resource have been designed to cover point 2.1.2 (q) of the OCR A-level Biology A specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the four tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The next part of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix. The rest of the lesson describes the steps in the biuret test for proteins and the emulsion test for lipids. The students will learn that the addition of sodium hydroxide and then copper sulphate will result in a colour change from light blue to lilac if a protein is present and that following the addition of a sample to ethanol and then water, a cloudy emulsion is observed if a lipid is present.
Topic 5: Energy Flow, Ecosystems and the Environment (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 5: Energy Flow, Ecosystems and the Environment (Edexcel International A-level Biology)

8 Resources
As the first topic to be taught at the start at the second year of the Edexcel International A-level Biology course, topic 5 is very important and the content includes the key reaction of photosynthesis. All 9 of the lessons included in this bundle are highly detailed and have been filled with a wide variety of tasks which will engage and motivate the students whilst covering the following specification points: The overall reaction of photosynthesis The phosphorylation of ADP and the hydrolysis of ATP The light-dependent reactions of photosynthesis The light-independent reactions of photosynthesis The products of the Calvin cycle The structure of the chloroplasts and the role of this organelle in photosynthesis Be able to calculate net primary productivity Know the relationship between NPP, GPP and R Understand the meaning of the terms ecosystem, community, population and habitat The numbers and distribution of organisms in a habitat are controlled by biotic and abiotic factors The concept of niche The effect of temperature on the rate of enzyme activity and the calculation of the Q10 Isolation reduces gene flow and leads to allopatric and sympatric speciation If you would like to sample the quality of the lessons in this bundle, then download the products of photosynthesis lesson as this has been uploaded for free