A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
This engaging lesson looks at the myogenic nature of cardiac muscle and explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the normal electrical activity of the heart. The PowerPoint and accompanying resources have been designed to cover the points 7.8 (i & ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification.
The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 1. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
Due to the detailed nature of this lesson, it is estimated that it will take about 2 hours of A-level teaching time to cover the two specification points
This fully-resourced lesson looks at the detailed structure of a muscle fibre, and focuses on the proteins, bands and zones that are found in the myofibril. The engaging PowerPoint and acccompanying resource have been designed to cover point 7.10 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification.
The lesson begins with an imaginary question from the quiz show POINTLESS, where students have to recognise a range of fields of study. This will reveal myology as the study of muscles so that key terms like myofibril, myofilament and myosin can be introduced. Students should have met these terms as well as actin when learning about the sliding filament theory in topic 7.2, so this acts as a recall. Moving forwards, students will be shown the striated appearance of this muscle so they can recognise that some areas appear dark where both myofilaments are found and others as light as they only contain actin or myosin. A quiz competition is used to introduce the A band, I band and H zone and students then have to use the information given to label a diagram of the myofibril. The final task challenges the students to use their knowledge of the sliding filament theory to recognise which of these bands or zones narrow or stay the same length when muscle is contracted.
This clear and concise lesson looks at the calculation of cardiac output as the product of stroke volume and heart rate. This engaging PowerPoint and accompanying resource have both been designed to cover point 7.9 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to calculate cardiac output.
The lesson begins by challenging the students to recall that the left ventricle is the heart chamber with the thickest myocardial wall. This leads into the introduction of stroke volume as the volume of blood which is pumped out of the left ventricle each heart beat. A quick quiz game is used to introduce a normative value for the stroke volume and students are encouraged to discuss whether males or females would have higher values and to explain why. A second edition of this quiz reveals a normative value for resting heart rate and this results into the introduction of the equation to calculate cardiac output. A series of questions are used to challenge their ability to apply this equation and percentage change is involved as well. The final part of the lesson looks at the hypertrophy of cardiac muscle and students will look at how this increase in the size of cardiac muscle affects the three factors and will be challenged to explain why with reference to the cardiac cycle that was covered in an earlier topic.
This fully-resourced lesson looks at the roles of glycolysis in aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 7.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification.
The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed.
This lesson has been written to tie in with the other uploaded lessons on the Link reaction, Krebs cycle, oxidative phosphorylation and the production of lactate.
This fully-resourced lesson looks at the series of oxidation-reduction reactions that form the Krebs cycle and focuses on the products in terms of reduced NAD, FAD and ATP. The engaging PowerPoint and accompanying resource have both been designed to cover the fifth part of point 5.2 of the AQA A-level Biology specification.
The lesson begins with a version of the Impossible game where students have to spot the connection between 8 of the 9 terms and will ultimately learn that this next stage is called the Krebs cycle. The main part of the lesson challenges the students to use descriptions of the main steps of the cycle to continue their diagram of the reactions. Students are continually exposed to key terminology such as decarboxylation and dehydrogenation and they will learn where carbon dioxide is lost and reduced NAD and FAD are generated. They will also recognise that ATP is synthesised by substrate level phosphorylation. The final task challenges them to apply their knowledge of the cycle to work out the numbers of the different products and to calculate the number of ATP that must be produced in the next stage
This lesson has been designed to tie in with the other uploaded lessons on glycolysis, anaerobic respiration, the Link reaction and oxidative phosphorylation.
This detailed lesson introduces the four stages of aerobic respiration and looks at the relationship between structure and function of the mitochondrion. The engaging PowerPoint and accompanying resource have been designed to cover points 12.2 (a) and (i) of the CIE International A-level Biology specification which states that students should be able to demonstrate and apply an understanding of the inner and outer mitochondrial membranes, cristae, matrix and mitochondrial DNA.
The lesson begins with an introduction to glycolysis and students will learn how this first stage of aerobic respiration is also the first stage when oxygen isn’t present. A version of “GUESS WHO” challenges students to use a series of structural clues to whittle the 6 organelles down to just the mitochondrion so that they can learn how the other three stages take place inside this organelle. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the Link reaction and the Krebs cycle to run. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP.
This engaging and fully-resourced lesson looks at the myogenic nature of cardiac muscle and explores the roles of the SAN, AVN and Purkyne tissue in the initiation and control of heart action. The PowerPoint and accompanying resources have been designed to cover points 8.2 (d) of the CIE International A-level Biology specification.
The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 8.1. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
Due to the detailed nature of this lesson, it is estimated that it will take about 2 hours of A-level teaching time to cover the detail
This fully-resourced lesson explores how pyruvate can be converted to lactate or ethanol using reduced NAD and that the reoxidation of the coenzyme allows glycolysis to continue. The engaging and detailed PowerPoint and accompanying differentiated resources have been designed to cover points 12.2 (j) and (k) of the CIE International A-level Biology specification which states that students should be able to explain the production of a small yield of ATP in anaerobic conditions and recognise the concept of an oxygen debt
The lesson begins with a focus on the coenzyme, NAD, and students are challenged to recall details of its role in the oxidation of triose phosphate. Students will learn that oxidative phosphorylation in aerobic respiration allows these coenzymes to be reoxidised but that another metabolic pathway has to operate when there is no oxygen. Time is taken to go through the lactate and ethanol fermentation pathways and students are encouraged to discuss the conversions before applying their knowledge to complete diagrams and passages about the pathways. Understanding checks in a range of forms are used to enable the students to assess their progress whilst prior knowledge checks allow them to recognise the links to earlier topics. Students will also be introduced to the oxygen debt and will learn how the volume consumed after vigorous exercise is used to catabolise lactic acid and restore the body’s stores to normal levels.
This lesson has been written to tie in with the other uploaded lessons on the stages of aerobic respiration.
This fully-resourced lesson looks at the double, closed circulatory system as found in a mammal and considers how the pulmonary circulation differs from the systemic circulation. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 (a) of the CIE International A-level Biology specification
The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary.
As a result of the constant reference to the heart, the blood vessels and the blood, students will be reminded that these are the components of the circulatory system
This fully-resourced lesson explains how gene mutations can occur by substitution, deletion and insertion and explores how these base pair changes can affect the primary structure of the polypeptide and therefore the phenotype. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 16.2 (e) of the CIE International A-level Biology specification which states that students should understand how these mutations occur and can affect the phenotype.
In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was taught in topic 6. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a quick quiz competition is used to introduce the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met in the previous lesson. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Each of the 3 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 8.2 (The heart) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include:
The external and internal structure of the mammalian heart
The differences in the thickness of the walls of the chambers
The cardiac cycle and the blood pressure changes during systole and diastole
The initiation and control of heart action
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics
Each of the 7 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 8 (Transport in mammals) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include:
The double, closed circulatory system of a mammal
The relationship between the structure and function of arteries, veins and capillaries
The role of haemoglobin in carrying oxygen and carbon dioxide
The significance of the oxygen dissociation curve at different carbon dioxide concentrations (Bohr effect)
The external and internal structure of the mammalian heart
The cardiac cycle, including the blood pressure changes during systole and diastole
The initiation and control of heart action
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics
If you would like to see the quality of the lessons, download the arteries, veins and capillaries lesson as this is free
This fully-resourced REVISION lesson has been written to challenge the students on their knowledge of the content of topic 1 (Cell structure) of the CIE International A-level Biology specification. The PowerPoint and accompanying resources will motivate the students whilst they assess their understanding of the content and identify any areas which may require further attention.
The wide range of activities have been written to cover as much of the topic as possible but the following specification points have been given particular focus:
ATP is produced in mitochondria and chloroplasts and the role of ATP in cells
Recognising eukaryotic cell structures and outlining their functions
Calculating actual sizes from electron micrographs
The structural features of a typical prokaryotic cell
The key features of viruses as non-cellular structures
Distinguish between resolution and magnification
Quiz rounds such as “GUESS WHO of CELL STRUCTURES” and “YOU DO THE MATH” are used to test the students on the finer details of their knowledge of the structure and functions of the organelles and some key numerical facts
Each of the 6 lessons which are included in this bundle have been written to specifically cover the content as detailed in topics 6.1 & 6.2 of the CIE International A-level Biology specification. The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of nucleic acids and protein synthesis
Lessons which cover the following specification points are included in this bundle:
Structure of DNA and RNA
Genes as base sequences that code for polypeptides
Gene mutations
Transcription
Translation
If you would like to see the quality of the lessons, download the lesson on gene mutations as this have been uploaded for free
This detailed lesson explains how the process of transcription results in the production of messenger RNA (mRNA). Both the detailed PowerPoint and accompanying resource have been designed to specifically cover the first part of point 6.2 (d) of the CIE International A-level Biology specification.
The lesson begins by challenging the students to recall that most of the nuclear DNA in eukaryotes does not code for polypeptides. This allows the promoter region and terminator region to be introduced, along with the structural gene. Through the use of an engaging quiz competition, students will learn that the strand of DNA involved in transcription is known as the template strand and the other strand is the coding strand. Links to previous lessons on DNA and RNA structure are made throughout and students are continuously challenged on their prior knowledge as well as they current understanding of the lesson topic. Moving forwards, the actual process of transcription is covered in a 7 step bullet point description where the students are asked to complete each passage using the information previously provided. An exam-style question is used to check on their understanding before the final task of the lesson looks at the journey of mRNA to the ribosome for the next stage of translation.
This lesson has been written to challenge all abilities whilst ensuring that the most important details are fully explained.
Each of the 4 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 6.2 (Protein synthesis) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include:
A polypeptide is coded for by a gene
A gene mutation is a change in the sequence of nucleotides
Sickle cell anaemia results from a change in the amino acid sequence
Transcription as the production of mRNA from DNA
Information on DNA is used during translation to construct polypeptides
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics
If you would like to see the quality of the lessons, download the introduction to gene mutations lesson as this has been shared for free
This detailed and engaging lesson looks at the culture of transformed host cells as an in vivo method to amplify DNA fragments. Both the PowerPoint and accompanying resources have been designed to cover the third part of point 8.4.1 of the AQA A-level Biology specification and ties in with the previous two lessons in this sub-topic on producing DNA fragments and the polymerase chain reaction.
The lesson begins with the introduction of the terms transgenic and transformed. Students will learn that bacterial cells are the most commonly transformed cells so the next task challenges their recall of the structures of these cells so that plasmid DNA can be examined from that point onwards. A quick quiz competition is used to introduce the key term, vector, and then the rest of the lesson looks at the details of the five steps involved in the transformation of the host cell:
Remove and prepare the plasmid to act as a vector
Insert the DNA fragment into the vector
Transfer the recombinant plasmid into the host cell
Identify the cells which have taken up the recombinant plasmid
All the transformed host cells to replicate and express the novel gene
Time is taken to explore the finer details of each step such as the addition of the promoter and terminator regions, use of the same restriction enzyme to cut the plasmid as was used to cut the gene and the different types of marker genes. Links are continuously made to the previous lessons in this topic so that students feel confident to answer assessment questions which bring in knowledge from all of the sections.
This fully-resourced lesson bundle covers the content as detailed in topic 8.4.1 of the AQA A-level Biology specification (recombinant DNA technology). All of the lessons have been written to contain a wide range of activities that will maintain student engagement whilst this potentially difficult concept is explained. Links are continuously made to previous lessons in topic 8 as well as those covered in the AS year (mainly topic 4)
If you would like to see the quality of the lessons, download the producing DNA fragments lesson as this has been uploaded for free
This fully-resourced lesson looks at the detailed structure of a muscle fibre, and focuses on the proteins, bands and zones that are found in the myofibril. The engaging PowerPoint and acccompanying resource have been designed to cover the third part of point E2 in UNIT 2 of the Pearson BTEC Level 3 National Diploma in Sport and Exercise Science specification.
The lesson begins with an imaginary question from the quiz show POINTLESS, where students have to recognise a range of fields of study. This will reveal myology as the study of muscles so that key terms like myofibril and myosin can be introduced. Moving forwards, students will be shown the striated appearance of this muscle so they can recognise that some areas appear dark where both myofilaments are found and others as light as they only contain actin or myosin. A quiz competition is used to introduce the A band, I band and H zone and students then have to use the information given to label a diagram of the myofibril. The final task challenges the students to use their knowledge of the sliding filament theory to recognise which of these bands or zones narrow or stay the same length when muscle is contracted.