Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
This GCSE chemistry resource bundle provides a thorough and accessible introduction to electrolysis, guiding students step by step through its principles, processes, and practical applications. It features five engaging lessons that cover everything from foundational concepts to required practical skills, ensuring students are well-prepared for exams.
The bundle includes:
Introduction to Electrolysis: Explains the basics of electrolysis, including how ionic compounds conduct electricity and the role of electrodes in separating elements.
Electrolysis of Molten Compounds: Demonstrates how electrolysis works with molten ionic compounds, providing clear examples and practice opportunities.
Electrolysis of Aluminium Oxide: Explores the extraction of aluminum using electrolysis, linking the process to real-world applications in industry.
Electrolysis of Aqueous Solutions: Teaches students how to predict the products of electrolysis in solutions, with diagrams and step-by-step explanations.
Required Practical: Electrolysis: Offers a detailed guide to the required practical, with instructions, safety considerations, and tips for accurately recording and analyzing results.
How to use: Each lesson includes clear explanations, diagrams, and exam-style questions to help students understand and apply key concepts. The practical lesson ensures students are confident in carrying out experiments and understanding their results. Perfect for GCSE chemistry teachers, this bundle provides a structured approach to teaching electrolysis while making it engaging and relevant to students.
Lesson 1 - Introduction to Electrolysis
Lesson 2 - Electrolysis of Molten Compounds
Lesson 3 - Electrolysis of Aluminium Oxide
Lesson 4 - Electrolysis of Aqueous Solutions
Lesson 5 - Required Practical Electrolysis
Practice calculating percentage yield with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
This comprehensive PowerPoint presentation, titled Effect of Temperature, is a dynamic resource designed for educators teaching the impact of temperature on reaction rates. Targeted at science students, this resource aligns with the principles of collision theory and provides an interactive approach to learning.
The lesson begins with clear learning objectives: understanding how temperature affects reaction rates and using collision theory to explain this phenomenon. A starter activity engages students with fundamental questions about reaction rates, graphing variables, and basic calculations, setting the stage for deeper exploration.
The main content includes structured explanations and hands-on simulations, using the PhET Reactions and Rates tool. Students will observe and analyze reactions at varying temperatures, enhancing their grasp of key concepts like particle movement, activation energy, and the conditions for successful collisions. Visual aids and particle diagrams complement the teaching material, making abstract concepts accessible and engaging.
This resource also features practice questions for skill reinforcement and challenge activities for advanced learners. A plenary section reviews key factors influencing reaction rates, encouraging students to consolidate their understanding.
Designed for flexibility, this resource can be adapted to classroom or virtual learning environments. The included file is a PowerPoint presentation (.pptx), ensuring compatibility with most devices. Last updated on 13/12/24 with detailed annotations and questions, this resource provides an up-to-date and interactive tool for educators.
Keywords: Collision Theory, Reaction Rates, Temperature and Activation Energy.
This PowerPoint is an essential teaching aid for understanding energy calculations in chemistry. It guides students through calculating energy changes using bond energies and determining whether a reaction is exothermic or endothermic.
The resource covers key learning objectives: explaining why bond breaking is endothermic and bond making is exothermic, analyzing reactions in terms of energy transfer, and performing accurate energy change calculations using the correct units (kJ/mol). It includes definitions, worked examples, and practice problems to reinforce understanding. Starter activities prompt students to review concepts like activation energy, reaction profiles, and the energy changes associated with chemical processes.
Students will work with bond energy values to calculate energy changes in various reactions, such as combustion and synthesis. They will also interpret the significance of negative and positive energy changes, linking them to exothermic and endothermic processes. The resource highlights the importance of bond energy in understanding chemical reactivity and energy conservation.
This ‘.pptx’ file is fully editable, enabling teachers to adapt the content to specific curricula or student needs. It’s ideal for high school chemistry lessons and is aligned with many science specifications. This resource has been refined for clarity and engagement, ensuring its relevance as a tool for teaching energy changes in chemical reactions.
This resource is a comprehensive PowerPoint presentation designed to teach the fundamental concepts of electrolysis using molten ionic compounds. It is tailored for students studying electrochemistry and provides a detailed exploration of the processes at play during electrolysis.
The presentation begins with clear learning objectives, which include describing electrolysis in terms of ion movement in molten compounds, predicting products at the electrodes, determining whether reactions are oxidation or reduction, and writing half-equations for the reactions. These objectives ensure a structured approach to understanding the topic and align with curriculum standards.
To engage students, the resource includes starter activities that introduce key concepts such as the roles of electrodes (cathode and anode), the definition of electrolysis, and the identification of cations and anions in a given compound. These activities encourage critical thinking and prepare students for the main content.
The presentation delves into the electrolysis of specific molten compounds, such as lead bromide and potassium iodide, using real-world examples to explain key principles. It highlights the necessity of melting ionic compounds to free the ions, enabling them to conduct electricity. Each step of the process is explained in detail, including the formation of products at the electrodes and their classification as oxidation or reduction reactions.
Interactive content includes labeled diagrams, step-by-step breakdowns of electrode reactions, and the writing of half-equations for both the cathode and anode. For example, the reduction of lead ions (Pb²⁺) to lead atoms and the oxidation of bromide ions (Br⁻) to bromine molecules are clearly explained with equations and visuals. The importance of concepts like OILRIG (Oxidation Is Losing, Reduction Is Gaining) is reinforced throughout.
The resource concludes with review questions and challenges, allowing students to test their understanding of topics such as the products of electrolysis, the necessity of molten ionic compounds, and the reactions occurring at each electrode. The PowerPoint file format (.pptx) ensures accessibility and compatibility for teachers. This resource is a valuable teaching aid for educators seeking to provide a thorough and engaging explanation of electrolysis with molten compounds.
Practice calculating the percentage by mass of an element in a compound with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Group 0: Noble Gases is a comprehensive and interactive PowerPoint resource designed for GCSE-level chemistry students. This lesson focuses on the unique properties, reactivity, and applications of noble gases, aligning with the AQA curriculum.
The lesson begins with engaging starter activities that review atomic structure and prompt students to identify why noble gases are unreactive. Learning objectives include:
Defining noble gases and understanding their electronic configurations.
Explaining their chemical inertness based on their full outer electron shells.
Exploring real-world uses, such as helium in balloons and argon in lightbulbs.
Core content highlights:
The physical properties of noble gases, such as being colorless, monoatomic, and non-flammable.
Trends in boiling and melting points down the group, explained through atomic size and intermolecular forces.
Practical applications that showcase the relevance of noble gases in everyday life.
The resource includes fill-in-the-blank activities, video-based questions, and thought-provoking practice tasks. Students analyze trends, predict properties of unobserved elements, and answer questions about boiling points, density, and atomic radii. Advanced questions challenge students to explain rare noble gas compounds, encouraging critical thinking.
Formatted as a .pptx file, this PowerPoint is compatible with most devices and ideal for classroom use or independent study. It features modern visuals, real-world examples, and interactive tasks that make chemistry engaging and accessible.
Perfect for teachers seeking a detailed, curriculum-aligned resource, this lesson provides a clear understanding of the noble gases and their significance in chemistry and beyond.
**Save 40% with the Complete Crude Oil and Hydrocarbons Bundle! **
Get this lesson as part of our GCSE Chemistry Crude Oil and Hydrocarbons Bundle and enjoy a huge discount! Instead of buying lessons individually, grab the entire unit with 5 lessons for just £6.00.
Click here to get the bundle now: https://www.tes.com/teaching-resource/resource-12984069
This PowerPoint presentation is a versatile and detailed resource designed for secondary school students to learn about hydrocarbons. It provides foundational knowledge of crude oil, hydrocarbons, and alkanes, aligning perfectly with chemistry curriculum requirements.
The resource begins with clear learning objectives, such as describing the composition of crude oil, defining hydrocarbons and alkanes, and using the general formula for alkanes to create molecular and displayed formulas. Starter activities introduce key topics by prompting students to recall fundamental concepts like chemical symbols and the origins of crude oil.
Through engaging content, the presentation explains how crude oil forms over millions of years from ancient sea creatures and plants, emphasizing its non-renewable nature. Students learn that crude oil is a mixture of hydrocarbons, defined as compounds containing only carbon and hydrogen. The section on alkanes highlights their saturated nature due to single covalent bonds and provides a step-by-step explanation of their general formula,
𝐶𝑛𝐻2𝑛+2.
Interactive tasks include completing tables for alkane formulas, identifying patterns in molecular structure, and answering exam-style questions. The resource emphasizes the real-world relevance of hydrocarbons by linking them to everyday products like petrol and candle wax.
Available as a PowerPoint file (.pptx), this resource includes detailed explanations, practical exercises, and answers to aid both teaching and learning. It is an ideal choice for educators seeking a structured and comprehensive teaching tool on hydrocarbons.
This PowerPoint presentation designed to teach students the fundamental concepts of heat energy changes during chemical reactions. It is a valuable resource for educators covering thermochemistry or introductory chemistry topics in their curriculum.
The presentation begins with engaging starter activities to prompt critical thinking, such as identifying units of energy and temperature, recognizing signs of chemical reactions, and determining the appropriate graphs for data types. These activities set the stage for the main content while reviewing key concepts.
Key learning objectives are outlined, including defining exothermic and endothermic reactions, distinguishing between the two based on temperature changes in the surroundings, and providing real-life examples of each type. The resource uses accessible language and visuals to explain these concepts. For instance, “Exothermic” is broken down to mean “Exit Heat,” where energy is released, causing the surroundings to heat up. Conversely, “Endothermic” is described as “Enter Heat,” where energy is absorbed, resulting in a cooling effect.
The presentation includes numerous examples of exothermic and endothermic processes, such as:
Exothermic: Combustion, neutralization reactions, oxidation, and single-use/reusable hand warmers.
Endothermic: Sports ice packs, thermal decomposition, and sherbet reactions.
Interactive slides encourage students to identify temperature changes and classify reactions as exothermic or endothermic. Real-world applications, such as self-heating cans and sports ice packs, are explained in detail, making the material relatable and engaging.
The resource also includes review questions and tables for students to complete, consolidating their understanding of reaction types and their practical implications. The PowerPoint file format (.pptx) ensures ease of use and compatibility for teachers. This presentation is an excellent tool for teaching energy changes in chemical reactions, combining theory with practical applications for an engaging learning experience.
This PowerPoint resource, explores how changes in concentration and pressure affect reaction rates, making it ideal for secondary-level chemistry lessons. Students will learn to describe these effects, supported by collision theory, and understand how particle interactions influence reaction outcomes.
The resource includes a structured lesson plan with objectives, engaging starter activities, and thought-provoking plenary questions. Students will answer questions like “What is collision theory?” and “Why does a concentrated acid react faster than a dilute one?” Visual explanations of particle interactions at different concentrations and pressures clarify key concepts. Real-world examples, such as comparing dilute and concentrated acids, help contextualize the material.
Additional features include interactive elements, such as a link to an online simulation of reaction rates and practice questions, to reinforce learning. The resource is formatted as a .pptx file, ensuring compatibility with PowerPoint or Google Slides.
Last updated on 13/12/24, this resource incorporates modern examples and student-centered activities, enhancing its relevance and usability. Perfect for teachers aiming to deliver dynamic lessons on reaction kinetics, it supports curriculum standards and fosters critical thinking.
This comprehensive PowerPoint resource on Covalent Bonding is designed to help students understand how non-metal atoms form bonds through the sharing of electrons. It provides a structured lesson plan that includes starter activities, clear explanations, and interactive learning objectives. Key topics covered include the definition of covalent bonding, how bonds form, and detailed instructions for drawing dot-and-cross diagrams of simple molecules such as H₂, F₂, O₂, CO₂, CH₄, NH₃, and H₂O.
The presentation is ideal for secondary school science students and aligns with chemistry curricula focused on bonding and molecular structures. Starter activities engage students by reinforcing prior knowledge, such as properties of metals and metallic bonding, while guiding them to categorize compounds as ionic or covalent. The slides are rich with examples and include step-by-step modeling of covalent bonding, which aids visual learners in grasping the concept.
Updated for clarity and usability, this PowerPoint includes review questions to consolidate learning and practice. It is a ready-to-use resource for teachers, complete with editable slides to tailor the content to specific classroom needs. The file format is .pptx, ensuring compatibility with most devices and software.
Perfect for lessons, revision, or self-study, this resource makes understanding covalent bonding accessible and engaging for students.
Paper Chromatography with Required Practical is an engaging PowerPoint resource that guides students through the principles and applications of chromatography in secondary science. Designed for practical and theoretical learning, this lesson focuses on defining chromatography, explaining its use in separating mixtures, and identifying pure and impure substances.
The resource begins with a clear introduction to chromatography as a separation technique for soluble substances, such as inks, dyes, and food colorings. Step-by-step instructions are provided for conducting a paper chromatography experiment, including a detailed demonstration and an alternative practical setup for classrooms with limited resources. Students will explore the concepts of stationary phase and mobile phase while understanding the role of solubility and particle attraction in chromatographic separation.
Interactive activities include labeling diagrams, completing fill-in-the-gaps exercises, and analyzing chromatograms to identify the components of mixtures. Students will calculate Rf values to compare and identify substances, building analytical and mathematical skills. Practice questions and quizzes reinforce key ideas and ensure thorough understanding of how chromatography can distinguish pure substances from impure ones.
The PowerPoint format (.pptx) makes it easily accessible for teachers and students, compatible with Microsoft PowerPoint and Google Slides. With its structured layout, real-world examples, and opportunities for hands-on experimentation, this resource provides a dynamic and engaging way to teach chromatography. Last updated in December 2024, it includes updated visuals, practical notes, and example calculations to enhance learning outcomes.
Ideal for science teachers seeking a comprehensive, curriculum-aligned resource, this PowerPoint is perfect for classroom instruction, revision sessions, and independent study.
This PowerPoint resource introduces middle school students to the importance of hazard symbols, their meanings, and how they guide safe handling of potentially dangerous substances. It emphasizes the need for safety in science labs and everyday life, using interactive activities to reinforce learning.
Key learning objectives:
Recognizing common hazard symbols and matching them to their meanings (e.g., toxic, flammable, corrosive).
Understanding how hazard symbols help identify risks and prevent accidents.
Learning safety precautions to take when handling hazardous materials, such as wearing goggles, tying back hair, and avoiding running in the lab.
Resource features:
The lesson begins with a starter activity asking students to identify hazard symbols and consider their importance in science and daily life. Core topics include:
Common Hazard Symbols:
Introduces symbols such as toxic, flammable, corrosive, explosive, and harmful, with clear descriptions and real-life examples like bleach, acids, and ethanol.
Safety Precautions:
Highlights actions to prevent accidents, including proper lab behavior, wearing safety equipment, and storing materials securely.
Interactive Scenario:
Students analyze a lab scene with potential hazards, identifying unsafe behaviors (e.g., students without goggles, chemicals near edges) and suggesting precautions to mitigate risks.
Interactive tasks include:
Matching hazard symbols to their names and meanings.
Filling in tables to identify hazards and safety precautions for specific substances (e.g., hydrochloric acid, sodium hydroxide, TNT).
Discussing real-world examples of hazards, such as asbestos exposure and its health risks.
The plenary activity consolidates learning by reviewing key concepts through reflective questions, ensuring students can apply their knowledge in practical settings.
File details:
This editable ‘.pptx’ file aligns with middle school science curricula. It includes clear visuals, practical activities, and relatable examples, making it an essential resource for teaching hazard symbols and lab safety.
**Save 40% with the Complete Crude Oil and Hydrocarbons Bundle! **
Get this lesson as part of our GCSE Chemistry Crude Oil and Hydrocarbons Bundle and enjoy a huge discount! Instead of buying lessons individually, grab the entire unit with 5 lessons for just £6.00.
Click here to get the bundle now: https://www.tes.com/teaching-resource/resource-12984069
This PowerPoint presentation provides an insightful exploration of the properties of hydrocarbons, specifically designed for secondary school chemistry lessons. It delves into how the physical and chemical properties of hydrocarbons change with chain length and their implications for real-world applications.
The resource begins with clear learning objectives, such as demonstrating the separation of crude oil into fractions through fractional distillation, describing trends in viscosity, flammability, and boiling point as chain length varies, and linking these properties to the practical uses of hydrocarbons. Starter activities engage students with thought-provoking questions, laying the foundation for the lesson.
Core concepts are presented through easy-to-follow explanations and interactive activities. The presentation covers key terms, including boiling point, flammability, viscosity, and volatility, with gap-fill exercises to reinforce understanding. It explains how fractional distillation separates hydrocarbons based on boiling points and explores the properties of smaller versus larger hydrocarbons. For instance, smaller hydrocarbons are more volatile and flammable, making them ideal for cooking gases, while larger hydrocarbons are more viscous and suited for road surfacing.
The resource also includes practical demonstrations, such as laboratory fractional distillation, supported by linked video content for enhanced understanding. Students are challenged to apply their knowledge by writing methods for separating synthetic crude oil and investigating its fractions’ properties.
Available as a PowerPoint file (.pptx), this resource is updated to align with educational standards and offers a comprehensive tool for engaging and educating students about the properties and uses of hydrocarbons.
Enhance your IB Chemistry DP exam preparation with these multiple-choice test papers covering Structures 1.1, 1.2, and 1.3 of the 2025 syllabus. Ideal for teachers and students, this resource includes:
A 30-mark Standard Level (SL) paper to be completed in 50 minutes.
A 40-mark Higher Level (HL) paper to be completed in 65 minutes.
Comprehensive mark schemes for both SL and HL papers.
A generic answer sheet for students to record their responses.
Perfect for in-class assessments or practice exams, these papers are designed to reflect the new IB Chemistry format for first assessment in 2025. Get your students exam-ready with these structured and time-effective resources!
This engaging lesson on giant covalent structures, updated on 3rd December 2024, provides students with a comprehensive understanding of this unique type of chemical bonding. The resource includes interactive activities, clear diagrams, and detailed explanations tailored for secondary school science students.
Giant covalent structures consist of non-metal atoms bonded together by strong covalent bonds, forming extensive lattice structures. Examples include diamond, graphite, and silicon dioxide. These substances exhibit properties like high melting and boiling points due to strong bonds, hardness (except for graphite, which is soft and slippery), and poor electrical conductivity (with graphite as an exception due to its delocalized electrons).
The lesson covers:
Key examples of giant covalent structures.
Comparative analysis of their properties.
Applications such as diamond in drill bits and jewellery, graphite in pencils and lubricants, and silicon dioxide in glass and ceramics.
With structured activities, such as matching exercises and review questions, students will reinforce their understanding of concepts like why diamond is a non-conductor and graphite is an excellent conductor. Starter questions encourage critical thinking about molecular forces and conductivity, while an optional video link provides visual reinforcement.
How to use: Teachers can guide students through the material by introducing the big question, using interactive matching tasks, and encouraging collaborative discussion during the exercises. This resource ensures students grasp the fundamental properties and applications of giant covalent structures in real-world contexts.
This PowerPoint resource is a complete instructional tool designed to teach students about energy changes in chemical reactions. The resource focuses on drawing and interpreting reaction profile diagrams for exothermic and endothermic reactions, defining activation energy, and explaining its role in chemical processes.
It includes clear learning objectives, engaging starter activities, and interactive tasks to reinforce understanding. Students will explore the differences between exothermic and endothermic reactions, learn how to label key features on reaction profiles, and understand how catalysts influence activation energy. The resource also covers key concepts like energy release, absorption, and bond breaking and forming.
Designed for high school chemistry lessons, this resource aligns with common science curricula and is ideal for interactive teaching, individual practice, or group work. It includes definitions, worked examples, gap-fill exercises, and review questions to assess understanding. Students are encouraged to draw diagrams, identify energy changes, and label components to deepen their comprehension.
This ‘.pptx’ file is fully editable and compatible with most presentation software, allowing teachers to customize content to suit specific classroom needs. The resource has been designed for clarity and engagement, ensuring it remains an effective teaching aid for energy concepts in chemistry.
This interactive PowerPoint presentation, provides a thorough introduction to the law of conservation of mass for chemistry students. Designed for GCSE-level learners or equivalent, the resource explains the principle that mass is neither created nor destroyed in chemical reactions, using both theoretical concepts and practical activities to engage students.
Key learning objectives include:
Defining the conservation of mass.
Observing changes in mass during chemical reactions.
Explaining changes in mass in non-enclosed systems using the particle model.
The lesson begins with an engaging starter activity involving counting atoms in a reaction to emphasize the rearrangement of atoms during chemical processes. The resource incorporates clear explanations, worked examples, and real-life scenarios, such as burning carbon or reacting calcium carbonate with hydrochloric acid, to illustrate the concept.
A hands-on experiment is included, allowing students to measure and analyze changes in mass when calcium carbonate reacts with hydrochloric acid. Detailed safety instructions, method steps, and example data are provided to ensure a safe and effective lab experience. The resource concludes with a range of practice questions, including calculations and conceptual problems, with answers for self-assessment.
This resource features enhanced explanations, updated examples, and clear instructions to improve learning outcomes. It is provided in a PowerPoint (.pptx) format, ensuring compatibility with most educational devices and software. Perfect for teachers seeking a comprehensive and interactive way to teach conservation of mass and for students aiming to solidify their understanding of fundamental chemistry concepts.