I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson starts with a PowerPoint slide which demonstrates how sunlight falling on plants is the initial source of energy for all living organisms. This moves on to a video which outlines the key terms related to food chains, pupils will be provided with a set of questions which they will need to answer using the video. Once pupils has completed this task pupils they can self-assess their work using the mark scheme provided.
Pupils will then be shown an example of a food chain and the PowerPoint slide will reiterate what the video outlined, about what a food chain and the arrow in the food chains demonstrates.
Pupils will then need to complete a task where they match key terms to their definitions and examples. This work can assessed once the task is complete.
The next part of the lesson will focus on animal populations and dynamics. The first task pupils will be given a set of questions about the impact of various changes on animal populations (i.e. predator numbers, disease). In groups/pairs they will be given a piece of A3 paper and they will need to answer the questions as best they can. Pupils can then check their answers against the answers provided in the PowerPoint presentation.
Pupils will then be given a food web and asked a set of questions about how various changes in the numbers of organisms within the food web would impact others, again this work can be self-assessed.
The final activity is for pupils to draw a graph to represent data on the numbers of coyote and jack rabbits over the course of twenty years, pupils will then need to answer questions about this data.
The plenary task is for pupils to complete a food chain choosing from a set of organisms provided on the PowerPoint slide, as an extra challenge pupils could try and complete their own food webs.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise.
Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse.
The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided.
The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete.
The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW for the higher tier, biology only specification.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will firstly be given, in pairs, information about Lamarck’s and Darwin’s theories of evolution. In pairs students will need to explain each theory to each other and discuss the merits and downfalls of each. The next task required pupils to summarise the main points of each of the scientists theories in a table, this work can be self-assessed against the answers provided.
Pupils will then be asked to consider the flaws in Lamarck’s theory, pupils will be asked to come up with a question to ask Lamarck about his theory and to discuss in pairs what they think the potential flaws of this theory could be. Once you have gone through pupils’ ideas as a class you can reveal some of the problems with this theory of evolution.
The next part of the lesson focuses on Darwin, firstly pupils will be asked to copy and complete sentences to summarise the main ideas from Darwin’s theory of evolution. Once this task is completed and marked, pupils will go on to look at why Darwin’s ideas were not published or accepted straight away. Pupils will be provided with some information but they will also need to use their own knowledge to answer a set of questions provided on a worksheet. Once this task is complete, a detailed mark scheme has been provided for pupils to either self or peer assess their work.
The very last task is an exam-style question, pupils will need to complete this in their books (at the back of books without notes for a stretch and challenge) and self or peer-assess using the mark scheme once they have finished.
The plenary task is for pupils to summarise what they have learnt in the lesson using the key words provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.3 unit on Adaptation & Inheritance.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with a video on inheritance, students should watch the video and whilst watching this they will answer a set of questions about chromosomes and where these structures are found within a cell. Once this task is complete, students can self-assess their work using the mark scheme provided.
Next, students are introduced to the idea of a gene. Students will be given the definition of a gene and will then need to complete a ‘Memory Test’ task which helps students to identify the locations of genes, chromosomes, the nucleus and cell membrane. Students will get a few minutes to study this image, they will then need to recreate it in their books. This task can then be self-assessed using the mark scheme provided.
Next, students are shown another image, they will need to use what they have learned so far this lesson to identify the different structures. They can discuss their ideas in pairs before the answers are revealed using the PowerPoint. Students will then need to complete a ‘Who Am I?’ task, - matching the names of structures to the correct description. The mark scheme for this task is included in the PowerPoint so students can self-assess their work once it is complete.
Students will now be shown a diagram to depict how fertilisation takes place, a sperm and egg cell meeting, nuclei fuse and genetic material joins together to form an embryo where each body cell (except sex cells) contains 46 chromosomes. Students could sketch a diagram of this in their books.
Lastly, students will watch a video on the discovery of DNA by Watson & Crick. Whilst watching the video they will need to answer a set of questions, once this task has been completed students should self-assess their answers using the mark scheme provided.
The plenary task is an ‘Anagram Challenge’ - students would need to unscramble a set of words to reveal 6 key words from this lesson. There is an ‘Extra Challenge’ task for students to come up with a definition for each of these key words, the answers to the anagrams are included.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.1 Health & Lifestyle.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with an introduction into what happens to your food during the process of digestion, students are shown a diagram which demonstrates how large, insoluble food molecules are broken down into small, soluble ones. This follows into the definition and role of the human digestive system, students now need to discuss their ideas of the names of organs present in the digestive system.
After a short class discussion, students will now complete a ‘Memory Test’ task. Students will need be shown a diagram of the human digestive system with organs labelled. They will have a few minutes to memorise the names of the organs of the digestive system, the labels will be taken away and then students need to try to remember as many of them as possible, by labelling their own digestive system worksheet. This task can be self-assessed once it is competed.
Next, students will be given an information sheet in pairs. Students will need to read the information sheet and using this write a description of the roles of a set of organs present in the digestive system. Once complete, students can mark and correct their work using the answers provided in the PowerPoint.
Lastly, students are shown a diagram of the villi which are present in the small intestine. Students will need to describe the adaptations of the villi which aid the role of absorption of small molecules into the bloodstream. The final activity requires students to find ten word, all related to the digestive system, in a word search.
The plenary activity is a set of answers, students will need to write the questions which match up these answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 9 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Homeostasis’ unit for the NEW AQA Biology Specification.
Lessons included:
1. The brain HT
2. The eye HT
3. Common problems of the eye HT
4. Plant hormones & responses HT
5. Using plant hormones HT
6. Controlling body temperature HT
7. Removing waste products HT
8. The kidney HT
9. Dialysis & kidney transplants HT
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with an introduction to fossils, a definition of a fossil and a task for pupils to think > pair > share how the remains of dead organisms could be preserved for millions of years. After a short classroom discussion about the ideas pupils have come up with, pupils can move on to the next task. Pupils will each be given a different piece of information on the ways in which fossil remains can be preserved. Pupils can move around the room and discuss their cards of information and use each others to take notes on these processes.
Pupils will then watch a video on how fossils are formed, using this video pupils will need to answer questions in their books. This work can be self-assessed using the marking criteria provided.
The next part of the lesson focuses on why fossils do not provide a complete record of evolution. After this has been explained, using the information and images provided on the PowerPoint slide, pupils can complete some quick check questions on what they have learnt this lesson. Once complete pupils can mark their work using the answers provided.
The final task is for pupils to complete a table to demonstrate the evolution of the horse, they will each be given a card of information on a particular stage of evolution. They can use each other to complete the full picture of how the horse evolved, completing their own table in chronological order.
The last task is a set of exam-style questions on what pupils have learnt this lesson, they can answer these at the back of their books for an extra challenge. A mark scheme is provided for pupils to assess and correct their work once it is complete.
The plenary task is for pupils to summarise what they have learnt this lesson as three facts, three key words and a question to test their peers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This bundle of resources contains 4 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Inheritance, variation & ecology’ unit for the NEW AQA Biology Specification.
Lessons included:
Cloning
Mendel
Theories of evolution
Evolution & Speciation
The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of this lesson focuses on biodiversity, pupils will watch a video and have to answer questions whilst watching the video. Once complete pupils can self-assess their work using the answers provided in the PowerPoint.
The next slide shows a graph depicting the human population growth in the last 8000 years and information describing the effect this is having on our planet.
The next part of the lesson focuses on human impacts on biodiversity. Firstly pupils will need to come up with a mind map of all the ways in which humans use the land. As an extension task pupils can also discuss what impact this may be having on our environment. Some key ideas will then be gone through using information provided on the PowerPoint.
Pupils will then watch a video on human impacts on biodiversity, using the information in the video they will need to answer a set of questions. Once this task is complete pupils can self-assess their work using the answers provided.
The next task focuses on waste produced from human activities, each pupil will be given a card of information on a specific pollutant and the effect it has on the environment. Pupils will need to walk around the room trading information in order to complete a table of information on these pollutants.
The very last task is an exam-style question, higher tier pupils can complete this question in the back of their books without looking at their notes from the lesson. Once completed pupils can assess their work using the mark scheme provided.
The plenary task is for pupils to write 3 facts, 2 key words and 1 question on what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
The first part of this lesson will focus on a recap of some of the details learnt during the decay lesson, pupils are given a set of four multiple choice questions which they should answer in their books and then self-assess.
The first task introduces recycling of materials in the ecosystem, pupils will need to read through a paragraph of information as a class. The slide will then be changed and pupils will need to try to recreate the paragraph as best as they can using the key words provided. Once completed the slide can be changed back to the initial paragraph for pupils to check and correct their work.
The next part of the lesson is for pupils to look at the difference between a decomposers and detritivores, students will be given information in pairs and will need to teach each other about the organism card they have in their hands. Students will then try to write a description of each of the organisms in their books.
The next part of the lesson focuses on the water cycle, firstly students will need to come up with as many processes as they can think of that contribute to the water cycle. Once this task has been assessed pupils will then be given a set of questions which they will need to answer whilst watching a video, once complete their answers can be assessed using the mark scheme provided.
Using their answers from their previous tasks pupils will now need to match up the key words to the definition and the final task is for pupils to complete a diagram of the water cycle using the key words and definitions provided in the last task.
The plenary task pupils will be given a set of 5 answers, it is up to the pupils to come up with 5 questions which may correspond to these 5 answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Biology GCSE, particularly for the higher tier for the 'Infection & Response ’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a starter discussion to remind students about communicable disease, and which bacteria are harmful.
The next slides introduce and define pathogens, and some harmful and non-harmful bacteria. They will then watch a short video which explains the differences between viruses and bacteria then complete a Venn diagram task.
The next task is a true/false activity to complete as a class and asses their understanding thus far. Students are then directed to work in pairs to make a mind map in their books describing how pathogens are spread.
Students will then be instructed to work on their own to answer three questions about pathogens spreading. Answers are on the following slide for self-assessment.
The plenary task is an exam style question, students can self-assess to the mark scheme on the last slide.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on the human gas exchange system begins with a review of gas exchange in plant leaves and insects, and the adaptations each have made in order to reduce water loss.
The first task is to fill in the blanks in a paragraph describing gas exchange in mammals, particularly humans. Answers are on the following slide for self-assessment.
Students are then introduced, slide by slide, to the features of human’s gas exchange system including the nasal cavity, trachea, bronchus, bronchioles and alveoli. Each slide has a diagram, description of the feature, and explanation of its role in gas exchange.
The next task is to list the features of the efficient gas-exchange system in humans, at the epithelium of the alveoli. The adaptations of the alveoli are then expanded upon over the next few slides. Students will use the included worksheet to describe the on the ways which surface area, a permeable barrier, a thin barrier and maintenance of diffusion gradient make for efficient gas exchange.
The plenary for this lesson is an anagram challenge! Students can uptake an extra challenge and define each unscrambled word as well.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a resource for the new GCSE AQA Specification, it meets specification points from the ‘Infection & Response’ unit.
This resource contains two shorter lessons or one full lesson on bacterial & viral diseases.
Bacterial disease: This lesson begins with pupils considering why death rates due to infectious diseases are now 30% lower than they were in the early 20th century.
You will then introduce the three bacterial diseases the students will need to learn about - salmonella, gonorrhoea and bacterial diseases in plants - and ask students to discuss what they already know about these diseases.
Pupils will then copy the table from the PowerPoint into their books and they can either read information in pairs or use the information placed around the room to complete the table. You could check the students have recorded all relevant information by self-assessing the work using red pens.
For the mid-lesson plenary some statements about bacterial diseases will be read out and pupils can use thumbs up/thumbs down or RAG cards to show whether they think the statement is true or false. This will give you a chance to address any misconceptions.
The next activity can be a silent task, pupils complete questions in their books and when finished they should peer-assess using their red pen.
The plenary is an exit card (piece of paper) where pupils should write down a topic they feel secure with and an area which they do not feel as secure with. This can be addressed at the beginning of the next lesson.
Viral diseases: The lessons starts with a recap on the viral diseases the students would have learnt about a beginning of the unit when covering communicable and non-communicable diseases (see my Health & Wellness lesson). Students can discuss and then a mind map can be brought together on the white board.
Pupils then draw a table into their books and use the information around the room to complete the table. This is then followed by a mid-lesson progress check, pupils will answer questions in silence in their books which are then self-assessed using red pen.
You can then conduct a game of key word bingo with your students. This works by pupils choosing 6 of the key words from the board and you can randomly read definitions of these key words, if pupils have they key word they should cross the word out. Once all 6 of their key words are crossed out they can call bingo!
The plenary is a 3-2-1 recap of the lesson, pupils should write three facts they have learnt, two key words and a question to test their peers knowledge of viral diseases. If there is time at the end of the lesson
All of the resources are found within the PowerPoint :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first task involves pupils discussing the definitions for a set of ecological terms, pupils can write their ideas down in their books and then watching a video to fill in any blanks they were unsure of. Once this has been completed pupils can self-assess their answers using the mark scheme provided.
The next task is for pupils to think > pair> share about how animals are interdependent upon each other, they can write down their ideas as a brain storm in their books. Once this has been completed, pupils can self-assess their work using the answers provided.
Pupils will then be given some information on stable communities, they will need to read this information in pairs and then try and answer a set of questions. They can then self-assess their work, correcting anything they didn’t get correct using the answers provided.
Pupils will now be introduced to the difference between abiotic and biotic factors, the first task is for pupils to watch a video and sort the factors demonstrated in the video into two columns – abiotic vs. biotic. They will then be given a set of descriptions, pupils will firstly need to identify which factor is for a list provided and the second task is for pupils to identify whether this factor is biotic or abiotic. Pupils can complete this on the worksheet provided, once completed students can either self-assess or peer-assess their work, making any corrections if necessary.
The plenary task is for pupils to choose two organisms from the pictures on the PowerPoint slide, they will need to describe the difference in habitats between the organisms and compare the abiotic and biotic factors which affect their survival.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils are firstly asked to come up with a food chain for humans eating rice, then humans eating chickens and to consider the differences in energy efficiency between the two. This then leads onto the second slide which explains how shorter food chains mean more efficient food production.
The second task is for pupils to think > pair > share ideas about methods farmers could employ to ensure animals gain new biomass at an efficient rate. Once pupils have written their ideas down in their books the answers can be revealed on the PowerPoint, students can check their work against the answers and correct anything they need to. The methods listed on the PowerPoint have disadvantages, pupils should then have a short discussion in pairs of what these negatives are before they are revealed.
The next part of the lesson focuses on fish stocks, students are given some information and are asked to consider how we might sustainably manage fish stocks. Once students have some to discuss as groups and then as a class, pupils are given a set of questions they will need to answer whilst watching a video. Once this is complete students can self-assess their work.
The last part of the lesson focuses on biotechnology in food production. Students will be given some information sheet in their groups and should use this information to answer a set of questions, once pupils have completed these questions they can self or peer-assess their work using the mark scheme provided.
The very last task may be more suited to higher-ability classes. Pupils will be given a set of jumbled up sentences, students need to place the sentences in the correct order to describe the process of making mycoprotein, students can assess their work once complete.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by students considering in pairs/groups the names of different methods of contraception they have already heard of, they can create a mind map in their book which can then be checked against the list provided.
Pupils will then watch a video which runs through some of the types of contraception out there and their pro’s and con’s, pupils will need to watch the video and note down as many advantages and disadvantages of these methods of contraception as they can. This task can be self-assessed using the answers provided.
In the next activity pupils will be given a card sort in pairs or in groups, they will need to read through the information on methods of contraception and complete a table to summarise how these methods work or prevent pregnancy as well as their advantages and disadvantages.
The next part of the lesson looks at the history of contraception, pupils will watch a video about Margaret Sanger - a progressive nurse in New York during the early 20th century. They will need to answer questions whilst watching the video, once finished their answers can be checked against the mark scheme provided.
The final task is a ‘quick check -silent 5’ task, pupils will need to answer the summary questions about what they have learnt this lesson into their books.
The plenary activity is for pupils to summarise what they have learnt this lesson in three sentences, using the list of key words that have been provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson starts by pupils discussing what they think might be some differences between primary and secondary sexual characteristics in males and females. Once they have brainstormed their ideas and you have carried out a short classroom discussion you can identify the differences between these two sets of characteristics.
The next slide provides students with a long list of statements describing secondary sexual characteristics of both males and females, pupils will need to sort the statements into two columns - male female - some will go into both. Once finished pupils can assess their work using the answers.
Now pupils will look at the structures found in both male and female reproductive systems and the roles they play. Pupils will be shown a diagram to demonstrate these parts and then pupils will be given a blank worksheet and a set of jumbled statements, they will need to match the structures to the correct part on their diagram. This work can then be assessed to check they have correctly matched the organs and functions.
Pupils will now watch a video introducing the menstrual cycle, using the video pupils will need to try and write a describe the roles each of the female hormones - oestrogen, progesterone, FSH, LH - plays in the menstrual cycle. If pupils weren’t able to get down a detailed answer they can mark and correct their work using answers provided.
The final activity is an exam-style question, along with the mark scheme to check their work.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.3 unit on Adaptation & Inheritance.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with a ‘Think > Pair > Share’ activity which requires students to consider the definition for the term ‘evolution’. After students have had some time to talk about this, their ideas can be shared with the class and the answer can be revealed for students to check and correct their work.
This leads into an introduction to the fossil record as means of evidence for evolution, students will then need watch a video on the formation of fossils - during which they will answer a set of questions. Students can now mark and assess their work using the mark scheme provided.
Students will now be introduced to the idea of ‘Natural Selection’, they will be told the mechanism by which this works by using the example of girraffes with longer and shorter necks. Students will now be asked to complete a cartoon strip to summarise this process, once this task has been completed students will be able to mark and assess their work using the answers provided in the PowerPoint presentation.
The last part of the lesson students will be shown a video on examples of natural selection in action. Whilst watching this video, students will need to answer a set of questions, once this has been completed students can self-assess their work using the answers provided.
The plenary task requires students to write three quiz questions to test their peers on what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This resource is designed to meet specification points in the new AQA Trilogy Biology ‘Cells’ SoW.
For more resources designed to meet specification points for the new AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with pupils shown a picture of an amoeba and one of a polar bear, they will need to discuss the difference between the organisms in terms of how they take in oxygen from their environment. Once you have shared a few ideas from the pupils with the class you can show the pupils the difference between the two organisms - amoeba can rely on simple diffusion whereas larger multicellular organisms need specialised exchange surfaces.
Pupils are then shown three examples of exchange surfaces - alveoli, small intestine and leaves of plants - they will need to think about how these structures might be adapted to exchange materials efficiently. You could have a short class discussion to develop these ideas.
Once you have again discussed these factors with the class you can reveal the next slide which outlines the 4 main features of an efficient gas exchange surface.
Pupils will then be given a worksheet and they will need to move around the room reading posters of information about villi and alveoli to complete the worksheet. This should take approximately 20 minutes, once finished pupils can peer-assess their work using the answers provided with the PowerPoint presentation.
The plenary is an Exit Card pupils will complete and pass to you on the way out of the door, this requires pupils to write down 3 key words, one fact and a question to test their peers knowledge of what they have learnt about in the lesson today.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
**For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
**
The lesson begins with students recapping on the factors which may affect the distribution of organisms within an environment. Once pupils have discussed their ideas of abiotic and biotic factors which may affect organisms within their habitat they will need to assess their work using the answers provided.
The lesson will then focus on sampling techniques, firstly outlining what a quadrat is and how it is used when sampling an environment. The importance of random sampling is stressed & pupils will need to come up with some ideas as to how random samples could be obtained. Once their ideas have been assessed pupils can then move onto a worksheet which demonstrates how random sampling is conducted and explains how to work out the range, mean, median & mode of a data set.
Transect sampling is now introduced, pupils will watch a video and answer a set of questions watching the video. Once this task is complete pupils can answer the question using the answers provided on the PowerPoint presentation.
The final task is for pupils to perform their own sampling investigation, a worksheet is provided detailing the equipment needed, a method, a species identification key & a results table. Pupils can work in groups of 3 - 5 and use an area close to school such as the sports field / any large grassy area to complete their investigation. Once this is complete pupils can use their data set to find the range, mean, median & mode for each species.
The plenary task is for pupils to write down three facts, three key words and a question based on what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)