Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

784k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Chemistry (2016) - Mendeleev & the Periodic table
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Mendeleev & the Periodic table

(4)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the ‘Atomic Structure & Periodic Table’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with a video about Mendeleev and the development of the periodic table, pupisl should answer questions alongside watching this video. After this work has been self-assessed pupils will be given an information sheet in pairs, this can be tag read as a class for lower ability pupils. Using this information pupils will need to answer a set of questions, they can complete these tasks in their book and once finished this work can be self-assessed using the answers provided. The next part of the lesson focuses on metals vs. non-metals, pupils will be introduced to the idea that the periodic table is split into two groups and will then need to use a poster activity to summarise the differences in properties between these two groups. Once this work has been self-assessed, pupils will then be given another set of information about different types of metals and pupils will use this information to complete a worksheet. The plenary activity is a an exit card where pupils will need to summarise what they have learnt by writing down three key words, one fact and one question on a piece of paper which can be handed to the teacher as they leave. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Chemical Reactions
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Chemical Reactions

(0)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.3 For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
KS3 ~ Year 7 ~ Particles & Their Behaviour Homework
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Particles & Their Behaviour Homework

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 7 C1.1 Module on ‘Particles & Their Behaviour’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
KS3 ~ Year 8 ~ Reactions with Metals
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Reactions with Metals

(1)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Reactions with Metals’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
**BIG BUNDLE** KS3 ~ Year 7 - All Biology, Chemistry & Physics Lessons
SWiftScienceSWiftScience

**BIG BUNDLE** KS3 ~ Year 7 - All Biology, Chemistry & Physics Lessons

3 Resources
This bundle contains 57 whole lessons, along with all additional resources, which meet all learning outcomes within the complete Year 7 Activate Course, units include: Biology: B1.1 Cells B1.2 Structure & Function of Body Systems B1.3 Reproduction Chemistry C1.1 Particles & Their Behaviour C1.2 Elements, Atoms & Compounds C1.3 Chemical Reactions C1.4 Acids & Alkalis Physics P1.1 Forces P1.2 Sound P1.3 Light P1.4 Space The resources were designed with the Year 7 Activate course in mind, it contains over 24 weeks worth of lesson content!! You can find more lesson bundles aimed for the KS3 and KS4 science curriculum at: https://www.tes.com/teaching-resources/shop/SWiftScience All lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks!
NEW AQA GCSE Trilogy (2016) Chemistry - Metallic bonding and giant metallic structures
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Metallic bonding and giant metallic structures

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with students being introduced to the regular, crystal structure of a metal. To demonstrate the formation of metal crystals pupils can complete a simple practical activity whereby they place a piece of copper wire in silver nitrate solution, a displacement reaction occurs and silver metal crystals begin to form on the surface of the copper. Pupils can complete this task using the set of instructions included on the PowerPoint slide and write down their observations in their books. The next part of the lesson focuses on linking the structure of a metal to it’s properties, once this has been demonstrated to students using the information and diagrams included in the PowerPoint presentation they can copy and complete a worksheet to assess what they have learned. Once this task is complete students can assess their work using the mark scheme provided. Now pupils will look at metal alloys, firstly pupils will watch a video and answer a set of questions. Pupils can then self-assess their work using the answers provided. The last part of the lesson is on the properties of metals and how their properties relates to their uses, each student will be given a card of information describing a property of a metal. Pupils will walk around the room discussing the information they have on their card with others and using each other they should be able to complete a table of properties in their books. The plenary task requires pupils to come up with three facts, two key words and a question to test their peers on the topic of metallic bonding. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW KS3 ~ Year 8 ~ Separating Tehniques
SWiftScienceSWiftScience

NEW KS3 ~ Year 8 ~ Separating Tehniques

5 Resources
This bundle of resources contains 5 whole lessons, along with all additional resources, which meet all learning outcomes within the Year 8 ‘Separating Techniques’ Unit. Lessons include: Mixtures Solutions Solubility Filtration, evaporation & distillation Chromatography The lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks.
KS3 ~ Year 8 ~ Metal & Oxygen Reactions
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Metal & Oxygen Reactions

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.2 unit on ‘Metals & Other Materials’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with a demonstration of magnesium being burned in air. Students should write down their observations and try to write the complete word equation for magnesium + oxygen, the answer can then be revealed to the class using the PowerPoint. Students will now complete an investigation into how different metals react when burned with oxygen in air. Students should follow the practical worksheet, filling in the table provided with their observations, using their observations they will be asked to place the metals in order of reactivity. This task can be checked against the answers provided on the PowerPoint presentation when completed. Students will now compete a task whereby they will write a set of word equations into their books, making sure they fill in the blanks as they go. The mark scheme for this task is included in the PowerPoint so students can assess their work once it is complete. Students will then be shown how to include state symbols for balanced chemical equations, using this knowledge students will now need to write out the balanced symbol equations (including state symbols) for a set of metal + oxygen reactions. Students can self-assess their work once this is complete. The last task is a role-play, students will each be given either an element or a compound card. Music will be played and students can move/dance around the room, when the music stops they need to get together and line up to form a ‘metal + oxygen -> metal oxide’ word equation. The teacher can check that students have got together and lined up in the correct order! The plenary task requires students to write a twitter message about what they have learned this lesson, they should include #keywords. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Metal Displacement Reactions
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Metal Displacement Reactions

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.2 unit on ‘Metals & Other Materials’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with a recap on the reactivity series, students will be asked a seris a questions about certain metals found within the series. Students should be able to identify the metals based upon knowledge learned in previous lessons, once complete this task can be self-assessed using the mark scheme provided. Students will now be introduced to the idea of a ‘displacement reaction’ as a reaction where a more reactive metal found in the reactivity series will displace a less reactive metal. An example is shown - aluminium oxide + iron -> aluminium oxide + iron. Students will then be give a set of reactions, without the products written in, they will need to decide whether a displacement reaction will take place or not. This work can then be marked and corrected using the mark scheme provided. Students will now complete an investigation ‘Competition in Metals’. Students will follow the steps provided on the investigation worksheet to identify whether a displacement reaction has occurred between a number of metals + metal solutions. Students will fill in a results table as they go, noting down any observations as well as identifying if a reaction took place or not. Students can check their answers against the example results table found in the PowerPoint presentation. Lastly, students will complete a ‘True or False’ task, they will be given a set of statements and will need to identify whether they are true or false. This work can be peer or self assessed using the mark scheme provided. The plenary task requires students to complete a sentence starter, from the choice provided, in order to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Extracting Metals
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Extracting Metals

(1)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.2 unit on ‘Metals & Other Materials’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The first task is for pupils to research, either using their phones or using laptops, the dates at which different metals were discovered. Once they have found the dates and filled in their table, they should consider the link between the reactivity of the metal and when it was discovered. After a class discussion of their ideas, students are introduced the idea of a metal ore. The next task is for pupils to watch a video and answer questions on metal extraction, the answers to which are included in the PowerPoint presentation so students are able to self-assess their work. The next part of the lesson focuses on how metals can be extracted from their ores, firstly students will be shown the position of carbon within the reactivity series. They will then be told that any metal below carbon in the reactivity series is able to be extracted from its oxide by a reaction with carbon. The general word equation for this reaction is shown to students, they can make a note of this in their books. They will then be asked to write down the complete word equations for the reactions of copper, iron and zinc with carbon. The mark scheme for this is provided on the PowerPoint presentation for students to mark and correct their work once complete. Lastly, students need to be able to work out the amount of metal present in an ore. A worked example of this calculation is shown to students, they can make a note of the steps when approaching a question of this sort in their books. They will be then given a worksheet of questions to answer which requires students to calculate the masses of useful metal found in metal ores, as well as the waste. The mark scheme for this task is included in the PowerPoint so students can self or peer assess their work once it is complete. The plenary requires students to write a Whatsapp message to friends, explaining what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Giant Ionic Lattices
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Giant Ionic Lattices

(3)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with a set of questions on ionic compounds, pupils will watch a video and answer these questions. Then pupils will be shown a diagram to demonstrate the structure of a giant ionic compound and will be given a set of melting points for a range of ionic compounds, pupils will need to think > pair > share why they think the melting points of ionic compounds are so high. Once students have considered this, a class discussion can reveal some of the students ideas before the presentation moves on and explains why ionic compounds have high melting and boiling points. Students are now given a place-mat of questions, using information from the lesson so far they will need to complete part of it, for lower-ability students they may need extra support such as a text book to help them answer the questions. Once complete pupils can assess their work using the answers provided. The next part of the lesson focuses on electrolysis using ionic compounds, students are shown that only ionic compounds that are molten or dissolved in water are able to conduct electricity. The process of electrolysis is demonstrated to students using an animation . Pupils are then asked to thin > pair > share their ideas on why ionic compounds that are solid cannot conduct electricity. Once some ideas have been discuss as a class, the answer can be revealed on the PowerPoint presentation. Pupils will now complete the remainder of their questions on their place-mat and mark them using the answers provided. Pupils will now be given a set of ions and will need to decide whether they will be found at the positive or negative electrode, this activity can be done as a whole class by pupils holding up answers using whiteboards or in their books. Once completed students can assess their work using the answers provided. The last activity is for pupils to complete a cartoon strip to demonstrate what happens to molten potassium fluoride when it is used to conduct electricity. Part of the cartoon strip is filled in already, pupils just need to add in either diagrams or descriptions, this can also be assessed once complete. The plenary task is a set of answers, pupils need to come up with a set of questions for these answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Word Equations
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Word Equations

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C3 ’Reactions’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a recap on the differences between elements, compounds and mixtures. Students will be given a set of diagrams and will need to decide which is which, they could write their answers down in their books or use mini white boards and complete as a class. The answers can then be revealed using the mark scheme provided and students can check their answers. Students are then given an explanation of what happens to substances during a chemical reaction, atoms rearrange and new bonds form new substances with different properties. The example of iron sulphide is used, a demonstration could also be carried out to show that iron (in a mixture of iron and sulphur) is magnetic before it is heated. Once iron and sulphur are heated to form iron sulphide, the magnetic properties are now lost. Students are now shown the basis of a word equation and the difference between reactants and products. They will then be given two word equations and will need to determine which are the reactants and which are the products, the answers will then be revealed. They will then be given four more reactions, students will need to identify the reactants and products of these reactions. Students can then self-assess their work using the mark scheme provided. Students will now try writing their own word equations using a description provided, students will need to complete a worksheet of these tasks. The answers to these questions are included in the PowerPoint for students to self-assess their work. Lastly, students will complete an investigation to observe what happens during three chemical reactions. Students will be given the practical worksheet, they can complete the investigation as a group and note down their observations from the reactions. Once the investigation is complete, students will then need to match the reactants from the reactions they carried out with the correct products. This work can then be marked and corrected using the answers provided. The plenary task requires students to write a twitter message summarising what they have learned today, students should #keywords! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW KS3 ~ Year 7 ~ Burning Fuels
SWiftScienceSWiftScience

NEW KS3 ~ Year 7 ~ Burning Fuels

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C3 ’Reactions’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson starts with a definition for a fuel and then students need to ‘Think > Pair > Share’ their ideas of examples of fuels they already know. The answers can then be revealed on the PowerPoint for students to self-assess their work. Students are then asked to think about the conditions required for things to burn, students can discuss their ideas with each other before feeding back to the class. The answers can then be revealed using the PowerPoint presentation. Students can now summarise what they have learned by completing a ‘fill-in-the-blank’ task, this task can be self-assessed once it has been completed, using the mark scheme provided. Next, students are asked - ‘What would happen if a glass was placed over a candle? And why?’ - students can discuss their ideas in pairs/groups before feeding back to the class. The answer can then be revealed using the answer provided on the PowerPoint presentation. Next, students are introduced to the idea of renewable v.s non-renewable fuels, students are given examples of non-renewable fuels and are then shown a video on hydrogen as a renewable fuel. During the video, students will need to answer a set of questions, this can then be marked and assessed using the mark scheme provided. Students will now conduct an investigation into the energy released by different types of fuel - candle vs. ethanol. Students will heat a boiling tube of water using both of these fuels for a set period of time, using a thermometer to check the temperature every minute they will determine which released the most amount of energy. Lastly, students are introduced to the idea of an ‘oxidation’ reaction - they can take notes in their books of examples of oxidation reactions. The plenary task requires students to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7~ Elements & Atoms
SWiftScienceSWiftScience

KS3 ~ Year 7~ Elements & Atoms

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.2 ’Elements, Atoms & Compounds’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with a definition of the term ‘element’, giving gold as an example. Students are then asked to name as many elements as they can in pairs, and then feed back to the class. This work can be marked using the answers, and other examples, provided on the PowerPoint. Students will now watch a video on atoms and elements, whilst watching the video students will answer a set of questions. Once this task has been completed, students can self-assess their work using the mark scheme provided. Next, students are introduced to the definition of an ‘atom’, students are provided with a particle diagram to help depict the definition. Next, students are introduced to the Periodic Table, students can stick their own Periodic Table into their books Next, they will use the Periodic Table to complete a worksheet, once this task has been completed the work can be self-assessed using the mark scheme provided. The last task is a ‘progress’ check, students will copy and complete a set of questions in their books, this work can be marked and corrected using the mark scheme provided. The plenary activity requires students to write three sentences to summarise what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
Ks3 ~ Year 8 ~ Group 1 - The Alkali Metals
SWiftScienceSWiftScience

Ks3 ~ Year 8 ~ Group 1 - The Alkali Metals

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.1 unit on ‘The Periodic Table’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to the elements found within Group 1 of the Periodic Table - The Alkali Metals. Students will also learn some of the properties of the Alkali Metals which make them similar to other metals. Students will now focus on the reaction of alkali metals with water, students will learn what happens with lithium is placed in water - including the word equation for this reactions. After learning this, students will then need to copy and complete the word equations of other alkali metal reactions with water. This task can then self-assessed using the mark scheme provided. Students will now draw a table in their books before watching a video on the different reactions of Group 1 metals with water. Students will need to note down observations whilst watching the video. After completing this task, students are asked to ‘Think > Pair > Share’ their ideas about how they think rubidium and caesium will react with water. After this task, students can assess their work and also watch a another video to find out if their predictions about rubidium and caesium were correct. The next activity requires students to read a paragraph of information about the alkali metals, students will then need to answer a set of questions using this information. Once complete students can self-assess their work using the answers provided on the PowerPoint. The last activity is a ‘True or False’ activity, students will need to decide whether the statements are correct or not. The answers are provided for this task so students can check their work. The plenary activity requires students to write down three facts, three key words and one question to test their peers on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Hydrocarbons
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Hydrocarbons

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. The lesson begins on a description of hydrocarbons and why crude oil is so useful, this is followed by a video on crude oil. Whilst watching the video students will be required to answer a set of questions, this work can then be self-assessed using the mark scheme provided. The next part of the lesson requires students to watch a teacher demonstration of the distillation of crude oil, students will watch the teacher distill crude oil, removing at least four fractions. The fractions can be passed around the classroom and students will need to complete a results table to assess the smell, viscosity, colour and flammability of each fraction. Pupils will now focus on the structure of different alkanes, they will be introduced to the first four alkanes and be asked to think about why there is a pattern in the formulae of alkanes. Next, students will complete a summary table of the structural formulae, displayed formulae, 3D structure and boiling point of the first four alkanes in the homologous series. Students can self/peer assess their work using the answers provided. Finally, pupils will complete a ‘Quick Check’ task, which involves answering a set of questions about what they have learned this lesson. Those higher ability students may want to turn to the back of their books to avoid looking at notes, lower ability will need extra support. Again, the mark scheme for these questions is included in the PowerPoint. The plenary task requires pupils to write 3 facts, 3 key words and one questions to test their peers knowledge of what they have studied in class today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
Home Learning Pack ~ KS3 ~ Year 8 ~ Reactions with Metals
SWiftScienceSWiftScience

Home Learning Pack ~ KS3 ~ Year 8 ~ Reactions with Metals

(0)
This is a homeschool pack designed for the KS3 Year 8 Science course, specifically the ‘C2.3 Reactions with Metals’ unit of work. For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This comprehensive pack contains four pages of information, to meet learning objectives within the Year 8 'Reactions with Metals’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers. The pack covers the following topics: Acids & Metals Metals & Oxygen Metals & Water Metal Displacement Reactions Extracting Metals Ceramics Polymers Composites Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
NEW AQA GCSE (2016) Chemistry  - Global Climate Change
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Global Climate Change

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly be given some data on the rise in global temperature over the last 150 years, they will firstly need to plot this data on a graph and then will need to answer a set of questions. Pupils will then focus on the different ways in which global climate change will affect the environment, each pupils will be given a different card of information and they will need to walk around the room and share with each other to complete the table of effects. The next part of the lesson will look at reducing greenhouse gas emissions, firstly students will watch a video which focuses on carbon dioxide emission reduction. Pupils will need to answer some questions whilst watching the video which can then be self-assessed using the mark scheme provided. After this, pupils will told ways in which methane emissions can be reduced. Pupils will now complete a ‘Think > Pair > Share’ task whereby they discuss what ‘Carbon footprint’ might mean and will try to come up with a definition, the actual definition is then revealed and pupils can mark their work, making corrections where needed. Pupils are now asked to come up with a mind map listing all the ways in which their actions contribute to their annual carbon footprint, once they have created a list they need to come up with an action plan of how to tackle this and reduce their overall carbon footprint. This task can be self or peer assessed using the mark scheme provided. The final part of the lesson is an outline of problems faced when trying to reduce your carbon footprint, pupils need to understand these issues. The plenary task gives pupils a list of answers, for each answer pupils need to come up with the question that would lead to that answer. All resources are included within the PowerPoint presentation, if you have any questions please email me at swift.education.uk@gmail.com. Any feedback would be greatly appreciated :) Thanks!
KS3 ~ Year 7 ~ Boiling
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Boiling

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.1 ’Particles & their Behaviour’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a video on the process of ‘boiling’, students will need to answer a set of questions whilst watching the video. Once complete students can self-assess their work using the mark scheme provided. Students are then shown a method they could use to measure the boiling point of a liquid, they are given tips for what to look out for - e.g. bubbles of gas forming in the liquid and also an increase in temperature which then plateaus at a certain point without increasing further. Next activity is a ‘progress check’, students are asked to copy and complete a set of sentences to outline the process of boiling. This task can then be marked using the mark scheme provided on the PowerPoint. The next part of the lesson focuses on an investigation, students are asked to firstly think about why salt might be added to a pan of boiling water when cooking pasta. After a short class discussion, students will need to come up with a prediction of how adding salt to water will affect the boiling point of water - will it make it higher or lower? After making the prediction, students will now conduct the experiment to investigate the effect of salt on the boiling point of water. Results should be written into a results table, followed by plotting a graph of their results and writing a conclusion. The last section of the lesson focuses on the usefulness of boiling points and melting points of substances for predicting the state they are in. Students are provided with the melting point and boiling point of magnesium and are asked to predict the state of the metal at certain temperatures. This work can be marked and corrected using the mark scheme provided. Lastly, students are given a set of questions based upon what they have learned so far this lesson, they should indicate the correct answers with either thumbs up, thumbs down or thumb in the middle. The plenary task requires students to write a list of key words from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry -  Quantitative Chemistry Homework
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Quantitative Chemistry Homework

(2)
This task is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Chemical Calculations’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)