Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
3 Full Lesson Bundle (including a FREE revision lesson!) on Buffer Solutions. This bundle covers the OCR A Level Chemistry specification. Please review the learning objectives below.
**Part 1: Explaining How Buffer Solutions Work
To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base
To describe how a buffer solution is formed using weak acids, salts and strong alkalis
To explain the role of the conjugate acid-base pair in an acid buffer solution such as how the blood pH is controlled by the carbonic acid–hydrogencarbonate buffer system
**Part 2: Buffer Solution Calculations (Part 1)
To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation
To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution
**Part 3: Buffer Solution Calculations (Part 2)
To calculate the pH of a weak acid-strong alkali buffer solution
To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution
Part 4: BONUS Revision Lesson
To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali
To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on Water of Crystallisation (Formula of Hydrated Salts)
By the end of the lesson students should be able to:
To know the terms anhydrous, hydrated and water of crystallisation
To calculate the formula of a hydrated salt from given percentage composition or mass composition
To calculate the formula of a hydrated salt from experimental results
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 revision lesson including starter activity and main work task (3 rounds of questions) all with answers included on Revision on Buffer Solutions (Suitable for the OCR Specification)
By the end of this lesson KS5 students should be able to:
To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali
To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, risk assessment and post practical plenary questions on Chemistry Required Practical :Preparing a pure, dry sample of a soluble salt from an insoluble oxide or carbonate
Lesson includes lab report for students to fill in
By the end of this lesson KS4 students should be able to:
→ Describe a practical procedure for producing a salt from a solid and an acid
→ Explain the apparatus, materials and techniques used for making the salt
→ Describe how to safely manipulate apparatus and accurately measure melting points
This lesson should be taught as a practical lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Enthalpy Change of Hydration & Soluton
By the end of this lesson KS5 students should be able to:
To define the terms enthalpy change of solution and hydration
To construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid
To qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and main work task all with answers on Intermolecular Forces (London forces and permanent dipole-dipole interactions)
By the end of this lesson KS5 students should be able to:
Understand intermolecular forces based on induced-dipole interactions and permanent dipole-dipole interactions
Explain how intermolecular forces are linked to physical properties such as boiling and melting points
Compare the solubility of polar and non-polar molecules in polar and non-polar solvents
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and lesson slides on halogenoalkanes and their chemical reactions
By the end of this lesson KS5 students should be able to:
To Identify haloalkanes as primary, secondary or tertiary
To understand why haloalkanes are more reactive than alkanes
To describe what a nucleophile is and to state some examples
To outline the mechanism of nucleophilic substitution and elimination reactions involving haloalkanes
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on The Boltzmann Distribution. Suitable for OCR Specification (AS Chemistry)
By the end of this lesson KS5 students should be able to:
**1. To draw a labelled diagram of the Boltzmann distribution
**2. To explain qualitatively the Boltzmann distribution and its relationship with activation energy
**3. To explain how temperature changes and catalytic behaviour effect the proportion of molecules exceeding the activation energy and hence the reaction rate using Boltzmann distributions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity and model example questions and answers and practice questions on the rate equation and calculating the rate constant
By the end of this lesson KS5 students should be able to:
To determine the order of a reactant from experimental data
To calculate the rate constant, K, from a rate equation
To calculate the units of the rate constant
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks on Limitations of Cell Potentials
By the end of this lesson KS5 students should be able to:
LO1. To understand the limitations of predicting the feasibility of a reaction using cell potentials due to kinetics and non-standard conditions
LO2. To explain why electrochemical cells may not work based on the limitations of using cell potentials
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions with answers on Group 2 Elements
By the end of this lesson KS5 students should be able to:
Know group 2 elements lose their outer shell s2 electrons to form +2 ions
State and explain the trend in first and second ionisation energies of group 2 elements and how this links to their relative reactivities with oxygen, water and dilute acids
Construct half equations of redox reactions of group 2 elements with oxygen, water and dilute acids and to identify what species have been oxidised and reduced using oxidation numbers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
6 Full Lesson Bundle covering the first 6 chapters in the OCR A Level Chemistry Chapter on Energy
Lesson 1: Lattice Enthalpy
**By the end of the lesson students will:
Explain the term lattice enthalpy
Understand the factors that determine the size of lattice enthalpy
Explain the terms standard enthalpy change of formation and first ionisation energy**
Lesson 2: Born-Haber Cycles
**By the end of the lesson students will:
**1. Construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values
**2. Calculate the value for lattice enthalpy from Born Haber Cycle diagrams
**3. Calculate other enthalpy change values from Born Haber Cycle diagrams
Lesson 3: Enthalpy Changes of Solution & Hydration
**By the end of the lesson students will:
**1. Define the terms enthalpy change of solution and hydration
**2. Construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid
3. Qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration
Lesson 4: Entropy
**By the end of lesson students will:
**1. Know that entropy is a measure of the dispersal of energy in a system, which is greater the more disordered a system
**2. Explain the difference in entropy of solids, liquids and gases
**3. Calculate the entropy change of a reactant based on the entropies provided for the reactants and products
Lesson 5: Gibbs Free Energy (Part 1)
**By the end of the lesson students will:
**1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system
**2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T
**3.Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation
Lesson 6: Gibbs Free Energy (Part 2)
By the end of the lessons students will:
1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system
2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or 3. Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation
The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
10 Full Lesson Bundle on Acids & Bases. This bundle covers the AQA A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Bronsted-Lowry Acid and Bases
To describe the difference between a BrØnsted Lowry acid and base
To identify conjugate acid-base pairs
To explain the difference between monobasic, dibasic and tribasic acids
To understand the role of H+ in the reactions of acids with metals and bases (including carbonates, metal oxides and alkalis), using ionic equations
Lesson 2: Strong Acids & The pH Scale
To calculate the pH of a strong acid
To convert between pH and [H+(aq)]
To apply the relationship between pH and [H+(aq)] to work out pH changes after dilution
**Lesson 3 - The Acid Dissociation Constant **
To understand the acid dissociation constant, Ka, as the extent of acid dissociation
To know the relationship between Ka and pKa
To convert between Ka and pKa
**Lesson 4- pH of weak acids **
To recall the expression of pH for weak monobasic acids
To calculate the pH of weak monobasic acids using approximations
**Lesson 5 - The ionic product of water **
To recall the expression for the ionic product of water, Kw (ionisation of water)
To calculate the pH of strong bases using Kw
To apply the principles for Kc, Kp to Kw
Lesson 6-8 - Buffer Solutions (3 part lesson)
**Part 1: Explaining How Buffer Solutions Work
To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base
To describe how a buffer solution is formed using weak acids, salts and weak bases
To explain qualitatively the action of acidic and basic buffers
**Part 2: Buffer Solution Calculations (Part 1)
To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation
To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution
**Part 3: Buffer Solution Calculations (Part 2)
To calculate changes in pH when a small amount of acid or alkali is added to an acidic buffer solution
Lesson 9- Neutralisation & Titration Curves
To interpret titration curves of strong and weak acids and strong and weak bases
To construct titration curve diagrams of strong and weak acids and strong and weak bases
**Lesson 10- pH indicators & Titration Curves **
To explain indicator colour changes in terms of equilibrium shift between the HA and A- forms of the indicator
To explain the choice of suitable indicators given the pH range of the indicator
To describe an experiment for creating a titration curve
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks, main work tasks with answers on **The Equilibrium Constant Kc (Part 2) - A L evel OCR Chemistry (Year 13) **
*Note: A full lesson on the Equilibrium Constant Kc (Part 1) -AS Level OCR Chemistry (Year 12) is also available *
By the end of the lesson students should be able to:
To construct expressions for the equilibrium constant Kc for homogeneous and heterogeneous reactions
To calculate units for Kc
To calculate quantities present at equilibrium and therefore kc given appropriate data
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the reactions and uses of esters. Suitable for AQA A level Chemistry
By the end of this lesson KS5 students should be able to:
To describe some common uses of esters
To construct equations for the hydrolysis of esters in acidic or alkaline conditions
To describe how soap and biodiesel are made and can write equations for these reactions for specified animal fats/ vegetable oils
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured lesson including starter activity, AfL work tasks and lesson slides on the combustion of alkanes. Suitable for the OCR specification.
By the end of this lesson KS5 students should be able to:
To understand why alkanes are good fuels
To recall the equations (both word and symbol) for complete combustion of alkanes of alkanes
To recall the equations (both word and symbol) for incomplete complete combustion of alkanes of alkanes
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Redox Reactions. All tasks have worked out answers, which will allow students to self assess their work during the lesson
By the end of this lesson KS5 students should be able to:
LO1. To interpret the redox reactions and accompanying colour changes for:
(i) interconversions between Fe2+ and Fe3+
(ii) interconversions between Cr3+ and Cr2O72−
(iii) reduction of Cu2+ to Cu+
(iv) disproportionation of Cu+ to Cu2+ and Cu
LO2. To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions
NOTE: 23 printable flashcards of all the transition element reactions: precipitation, ligand substitution and redox reactions is available here
https://www.tes.com/teaching-resource/resource-12637622
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Buffer Solution Calculations (part 2) (Suitable for the AQA Specification)
By the end of this lesson KS5 students should be able to:
To calculate changes in pH when a small amount of acid or alkali is added to an acidic buffer solution
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A well structured lesson including starter activity, main work tasks with answers included on empirical and molecular formulae
By the end of the lesson students should be able to:
Understand what is meant by ‘empirical formula’ and ‘molecular formula’
Calculate empirical formula from data giving composition by mass or percentage by mass
Calculate molecular formula from the empirical formula and relative molecular mass.
Note: the starter activity involves students self assessing their homework on moles and the ideal gas equation (Homework questions and answers are included in this resource)
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter and main work task on the ideal gas equation
Lesson begins with exam style questions to recap on what students should know about moles
By the end of the lesson, students should be able to:
Recall the ideal gas equation
Understand the properties of an ideal gas
Rearrange the ideal gas equation to determine either pressure, temperature, moles or volume
Teacher will be able assess students understanding and progress throughout the lesson via mini AfL tasks
Students complete a 20-30 minute main work task at the end of the lesson on the ideal gas equation
Worked example answers to the main work task are provided to allow students to self assess their answers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above