Hero image

Teach Science & Beyond

Average Rating4.78
(based on 27 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

130k+Views

84k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
How Buffer Solutions Work (OCR)
TeachScienceBeyondTeachScienceBeyond

How Buffer Solutions Work (OCR)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on ** Explaining How Buffer Solutions Work** (Suitable for the OCR specification) By the end of this lesson KS5 students should be able to: To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base To describe how a buffer solution is formed using weak acids, salts and strong alkalis To explain the role of the conjugate acid-base pair in an acid buffer solution such as how the blood pH is controlled by the carbonic acid–hydrogencarbonate buffer system Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Moles and Equations
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Moles and Equations

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on reacting masses (moles and chemical equations) By the end of the lesson students should be able to: Know how to balance symbol equations Calculate the moles of reactants or products based on chemical equations and mole ratios Calculate the masses of reactants used or products formed based on chemical equations and mole ratios Students will be able to take rich notes on reacting masses, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding of the how to balanced equations and calculate reacting masses from chemical equations by carrying our mini AfL tasks either on mini white boards or in students’ books The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
The Ionic Product of Water (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

The Ionic Product of Water (A Level Chemistry)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the Ionic Product of Water, Kw By the end of this lesson KS5 students should be able to: LO1: To recall the expression for the ionic product of water, Kw (ionisation of water) LO2: To calculate the pH of strong bases using Kw LO3: To apply the principles for Kc, Kp to Kw Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Combined Spectroscopic Techniques
TeachScienceBeyondTeachScienceBeyond

Combined Spectroscopic Techniques

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Combined Techniques. Suitable for OCR AS Chemistry. By the end of the lesson, students should be able to: 1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Qualitative Analysis of Organic Functional Groups
TeachScienceBeyondTeachScienceBeyond

Qualitative Analysis of Organic Functional Groups

(0)
A well structured KS5 Lesson on Qualitative Analysis of Organic Functional Groups (Year 13). The lesson contains a starter activity and main work tasks, all with answers included By the end of the lesson students should be able: To recall qualitative analysis of organic functional groups on a test-tube scale To design qualitative analysis tests to distinguish between two or more organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Collision Theory and Rates of Reaction
TeachScienceBeyondTeachScienceBeyond

Collision Theory and Rates of Reaction

(0)
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Collision Theory and Rates of Reaction. Suitable for OCR Specification (AS Chemistry) By the end of this lesson KS5 students should be able to: To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions To calculate the rate of reaction using the gradients of a concentration-time graph To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Empirical and  Molecular Formulae
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Empirical and Molecular Formulae

(0)
A well structured lesson including starter activity, main work tasks with answers included on empirical and molecular formulae By the end of the lesson students should be able to: Understand what is meant by ‘empirical formula’ and ‘molecular formula’ Calculate empirical formula from data giving composition by mass or percentage by mass Calculate molecular formula from the empirical formula and relative molecular mass. Note: the starter activity involves students self assessing their homework on moles and the ideal gas equation (Homework questions and answers are included in this resource) Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Relative Masses
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Relative Masses

(0)
A complete lesson including starter activity, mini Afl tasks and main work task with answers for KS5 lesson on relative masses ( relative atomic mass, relative molecular mass and relative formula mass) By the end of the lesson students should be able to Define the terms relative atomic mass, relative formula mass and relative molecular mass Calculate the relative formula mass and relative molecular mass of compounds and molecules Students will be able to take rich notes on relative atomic mass, relative molecular mass and relative formula mass throughout the lesson The teacher will be able to quickly assess students’ understanding of the relative mass terms by carrying out mini afl tasks either on mini white boards or in their books The lesson ends with practice exam style questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Bond Enthalpies
TeachScienceBeyondTeachScienceBeyond

Bond Enthalpies

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Bond Enthalpies By the end of this lesson KS5 students should be able: LO1: To explain the term average bond enthalpy LO2: To explain exothermic and endothermic reactions in terms of enthalpy changes associated with the breaking and making of chemical bonds LO3: To apply average bond enthalpies to calculate enthalpy changes and related quantities The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Intermolecular Forces (Part 2)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Intermolecular Forces (Part 2)

(0)
A structured KS5 lesson (part 2 of 2) including starter activity, AfL work tasks and main work task all with answers on Intermolecular forces (Hydrogen bonding) By the end of this lesson KS5 students should be able to: To understand hydrogen bonding as intermolecular forces between molecules containing N, O or F and the H atom of –NH, -OH or HF To construct diagrams which illustrate hydrogen bonding To explain the anomalous properties of H2O resulting from hydrogen bonding The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Buffer Solution Calculations 2 (OCR)
TeachScienceBeyondTeachScienceBeyond

Buffer Solution Calculations 2 (OCR)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Buffer Solution Calculations (part 2) (Suitable for the OCR Specification) By the end of this lesson KS5 students should be able to: To calculate the pH of a weak acid-strong alkali buffer solution To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Synthetic Routes in Organic Synthesis (Yr12)
TeachScienceBeyondTeachScienceBeyond

Synthetic Routes in Organic Synthesis (Yr12)

(0)
A structured KS5 lesson (Yr12) including starter activity, discussion questions and main work tasks all with answers included on Synthetic Routes in Organic Synthesis. By the end of this lesson KS5 students should be able to: LO1: To identify individual functional groups for an organic molecule containing several functional groups LO2: To predict the properties and reactions of an organic molecule containing several functional groups LO3: To create two-stage synthetic routes for preparing organic compounds **A free summary of the synthetic routes for year 12 (AS Chemistry) can be found here: ** https://www.tes.com/teaching-resource/resource-12367174 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Half Equations (Redox Reactions)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Half Equations (Redox Reactions)

(0)
Lesson 2 of 3 on Redox Reactions in AS Chemistry. This lesson focuses on HALF EQUATIONS. The lesson includes starter activity, mini AfL work tasks with answers, main work tasks with answers (NOTE: Lesson 1, 2 and 3 are available as a bundle resource). This topic is also likely to be recapped in year 13 when students are introduced to redox reactions and electrode potentials By the end of the lesson students should be able to: Understand what a half equation is Explain what a redox equation is Construct half equations from redox equations Students will be able to take rich notes on this topic The teacher will be able to quickly assess students’ understanding of half equations by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Oxidation States
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Oxidation States

(0)
Lesson 1 of 3 on Redox Reactions in AS Chemistry. This lesson focuses on OXIDATION STATES. This lesson includes starter activity, mini AfL work tasks with answers, main work tasks with answers (NOTE: Lesson 1 , 2 and 3 are available as a bundle resource). This topic is also likely to be recapped in year 13 when students are introduced to redox reactions and electrode potential. By the end of the lesson students should be able to: Recall the rules for oxidation states of uncombined elements and elements in compounds Determine the oxidation states of elements in a redox reaction Identify what substance has been reduced or oxidised in a redox reaction Students will be able to take rich notes on this topic The teacher will be able to quickly assess students’ understanding of oxidation states by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Proton NMR Spectroscopy (Part 2)
TeachScienceBeyondTeachScienceBeyond

Proton NMR Spectroscopy (Part 2)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 2) NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 1) By the end of this lesson KS5 students should be able to: To analyse proton NMR spectra of an organic molecule to make predictions about: The different types of proton environment present from chemical shift values The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule Possible structures for the molecule 2 Bonus Questions on Combined Techniques are also included in this lesson! Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Simple & Giant Covalent Structures
TeachScienceBeyondTeachScienceBeyond

Simple & Giant Covalent Structures

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on simple and giant covalent structures By the end of this lesson KS5 students should be able to: LO1: To describe the structure of simple and giant covalent compounds LO2: To explain how the structure and bonding of simple and giant covalent compounds link to their different physical properties LO3: To evaluate the potential applications of covalent structures based on their physical properties (stretch & challenge) **Note for teachers: For the main work task the use of covalent models to recreate structure 1,2 and 3 is advised. However, conducting the main work task is still possible without the use of models! (Please just use the info sheet instead, which contains printable images of structures 1,2 and 3 instead) Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Acyl Chlorides and Their Reactions (OCR)
TeachScienceBeyondTeachScienceBeyond

Acyl Chlorides and Their Reactions (OCR)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Acyl Chlorides and Their Reactions By the end of this lesson KS5 students should be able to: To know how to name acyl chlorides To recall the equation for the formation of acyl chlorides from carboxylic acids using SOCl2 To construct equations for the use of acyl chlorides in the synthesis of esters, carboxylic acids and primary and secondary amides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Free Radical Substitution (AS Chemistry)
TeachScienceBeyondTeachScienceBeyond

Free Radical Substitution (AS Chemistry)

(0)
A structured lesson including starter activity, AfL work tasks and lesson slides on free radical substitution reactions By the end of this lesson KS5 students should be able to: 1.To know what a free radical is 2. To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination 3. To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
IR Spectroscopy
TeachScienceBeyondTeachScienceBeyond

IR Spectroscopy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on IR Spectroscopy. Suitable for OCR AS Chemistry. By the end of the lesson, students should be able to: To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses 2)To understand how infrared spectroscopy works 3)To understand the application of infrared spectroscopy To interpret IR spectra Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Practical Skills in Organic Synthesis (Yr13)
TeachScienceBeyondTeachScienceBeyond

Practical Skills in Organic Synthesis (Yr13)

(0)
A structured KS5 lesson (Yr13) including starter activity, discussion questions, videos and main work task all with answers included on Practical Skills for Organic Synthesis II. Suitable for the OCR specification. By the end of this lesson KS5 students should be able to: To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above