LESSON OBJECTIVE: Understand and describe the trends in the physical and chemical properties of the Group 2 Metals.
In this lesson we investigate the trends observed in the Group 2 metals physical properties, including atomic radius, melting point and density, and begin to discuss the properties in their chemical properties. This is lesson four in our inorganic chemistry series for Unit 10: Group 2 (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
Learning Outcomes:
(taken from the Cambridge International AS and A Level Chemistry (9701) 2019-2021 curriculum)
10.1 Similarities and trends in the properties of the Group 2 metals, magnesium to barium, and their compounds
a) describe the reactions of the elements with oxygen, water and dilute acids
b) describe the behaviour of the oxides, hydroxides and carbonates with water and dilute acids
d) interpret, and make predictions from, the trends in physical and chemical properties of the elements and their compounds
In this lesson we introduce the concept of reaction kinetics focusing on collision theory, rates of reaction, activation energy and the effect that changing concentration and pressure will have on reaction rates. This is lesson twenty four in our physical chemistry series for Unit 8: Reaction kinetics (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Define rate of reactions in terms of collision theory and activation energy and understand the effect concentration has on reaction rates.
LEARNING OUTCOMES (taken from the Cambridge International AS and A Level Chemistry (9701) 2019-2021 curriculum):
8.1 Simple Rate Equations, Orders of Reaction and Rate Constants
a) explain and use the term rate of reaction
b) explain qualitatively, in terms of collisions, the effect of concentration changes on the rate of reaction
In this lesson we describe the relationship between temperature and reaction rates and introduce the concept of the Boltzmann distribution. This is lesson twenty five in our physical chemistry series for Unit 8: Reaction kinetics (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Describe the effect of temperature on reaction rates and illustrate this on a Boltzmann distribution.
LEARNING OUTCOMES (taken from the Cambridge International AS and A Level Chemistry (9701) 2019-2021 curriculum):
8.2 Effect of temperature: on reaction rates and rate constants and the concept of activation energy
a) explain and use the term activation energy, including reference to the Boltzmann distribution
b) explain qualitatively, in terms both of the Boltzmann distribution and of collision frequency, the effect of temperature change on the rate of a reaction
In this lesson we go over the subatomic particles in the atom and the concept of the nucleus. This is lesson four in our physical chemistry series for Unit 2: Atomic Structure (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Understand the properties of subatomic particles of an element including naming, mass and charge conventions for elements and isotopes.
LEARNING OUTCOMES (from the Cambridge AS Chemistry Curriculum 2019-2021):
2.1 Particles in the atom
a) identify and describe protons, neutrons and electrons in terms of their relative charges and relative masses
b) deduce the behaviour of beams of protons, neutrons and electrons in electric fields
c) describe the distribution of mass and charge within an atom
d) deduce the numbers of protons, neutrons and electrons present in both atoms and ions given proton and nucleon numbers (atomic and mass numbers) and charge
2.2 The nucleus of the atom
a) describe the contribution of protons and neutrons to atomic nuclei in terms of proton (atomic) number and nucleon (mass) number
b) distinguish between isotopes on the basis of different numbers of neutrons present
c) recognise and use the symbolism xyA for isotopes, where x is the nucleon (mass) number and y is the proton (atomic) number
In this lesson we give an overview of the three types of chemical bonding (ionic, covalent and metallic) and an introduction into how VSEPR theory dictates molecular geometries. This is lesson eight in our physical chemistry series for Unit 3: Chemical Bonding (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Understand how ionic, covalent and metallic bonds form. Rationalise molecular geometries using VSEPR theory.
Learning Outcomes (from the Cambridge AS Chemistry Curriculum 2019-2021):
3.1 Ionic bonding
a) describe ionic bonding, using the examples of sodium chloride, magnesium oxide and calcium fluoride, including the use of ‘dot-and- cross’ diagrams
3.2 Covalent bonding and co-ordinate (dative covalent) bonding including shapes of simple molecules
a) describe, including the use of ‘dot-and-cross’ diagrams:
(i) covalent bonding, in molecules such as hydrogen, oxygen, chlorine, hydrogen chloride, carbon dioxide, methane, ethene
(ii) co-ordinate (dative covalent) bonding, such as in the formation of the ammonium ion and in the Al2Cl6 molecule
c) explain the shapes of, and bond angles in, molecules by using the qualitative model of electron-pair repulsion (including lone pairs), using as simple examples BF3 (trigonal planar), CO2 (linear), CH4 (tetrahedral), NH3 (pyramidal), H2O (non-linear), SF6 (octahedral), PF5 (trigonal bipyramidal)
3.4 Metallic bonding
a) describe metallic bonding in terms of positive ions surrounded by delocalised electrons
In this lesson we discuss how intermolecular forces arise due to the concept of electronegativity and bond polarity and other bond properties. This is lesson ten in our physical chemistry series for Unit 3: Chemical Bonding (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Understand the different intermolecular forces and their implications for a molecules physical properties. Explain these forces in terms of electronegativity and polarity.
Learning Outcomes (from the Cambridge AS Chemistry Curriculum 2019-2021):
3.3 Intermolecular forces, electronegativity and bond properties.
a) describe hydrogen bonding, using ammonia and water as simple examples of molecules containing N-H and O-H groups
b) understand, in simple terms, the concept of electronegativity and apply it to explain the properties of molecules such as bond polarity, the dipole moments of molecules and the behaviour of oxides with water
c) explain in terms of bond energy, bond length and bond polarity and use them to compare the reactivities of covalent bonds
d) describe intermolecular forces (van der Waals’ forces) based on permanent and induced dipoles, as in, for example, CHCl3(l); Br2(l) and the liquid Group 18 element.
In this lesson we focus on the concept of ionisation energy and how to interpret ionisation energy trends in the periodic table. This is lesson seven in our physical chemistry series for Unit 2: Atomic Structure (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Understand ionisation energy and use this to rationalise trends in the Periodic Table and to deduce electronic configurations of elements. To Interpret ionisation energy data.
Learning Outcomes (from the Cambridge AS Chemistry Curriculum 2019-2021):
2.3 Electrons: energy levels, atomic orbitals, ionisation energy, electron
affinity
d) i) explain and use the term ionisation energy
ii) explain the factors influencing the ionisation energies of elements
iii) explain the trends in ionisation energies across a period and down a group of the Periodic Table
e) deduce the electronic configurations of elements from successive ionisation energy data
f) interpret successive ionisation energy data of an element in terms of the position of that element within the Periodic Table
In this lesson we focus on the electron and how it arranges itself around the nucleus in principal quantum levels, subshells and atomic orbitals. This is lesson five in our physical chemistry series for Unit 2: Atomic Structure (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Understand how the electron exists in principal quantum levels and subshells, to describe the relative energies of the s, p and d orbitals and to sketch the s and p orbitals.
LEARNING OUTCOMES (from the Cambridge AS Chemistry Curriculum 2019-2021):
2.3 Electrons: energy levels, atomic orbitals, ionisation energy, electron affinity
a) describe the number and relative energies of the s, p and d orbitals for the principal quantum numbers 1, 2 and 3 and also the 4s and 4p orbitals
b) describe and sketch the shapes of s and p orbitals
In this lesson we focus on the rules stating how electrons fill orbitals and how to write electron subshell configuration. This is lesson six in our physical chemistry series for Unit 2: Atomic Structure (from the Cambridge International AS Chemistry Curriculum (9701) 2019-2021 curriculum).
LESSON OBJECTIVE: Understand how electrons fill orbitals and to determine subshell electronic configuration for given atoms and ions.
LEARNING OUTCOMES (from the Cambridge AS Chemistry Curriculum 2019-2021):
2.3 Electrons: energy levels, atomic orbitals, ionisation energy, electron affinity
c) state the electronic configuration of atoms and ions given the proton (atomic) number and charge, using the convention 1s22s22p6, etc.