A comprehension lesson that teaches students about how the eye and the camera treat light. Students will have the opportunity to create a simple pinhole camera.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Compare how the eye and the camera interpret light differently.
By the end of the lesson learners should be able to:
Success criteria:
Identify parts of the camera and the eye.
Describe how light is processed by the camera and the eye.
Compare the eye and the camera.
Powerpoint contains 15 slides.
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about the law of reflection, specular reflection and diffuse scattering and how objects appear in mirrors (virtual images)
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
An animation is included to show how a virtual image is generated.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how light reflects and the law of reflection.
Success criteria:
Identify types of reflection.
Describe the law of reflection.
Explain the appearance of virtual objects.
This lesson contains 40 slides
By the end of the lesson learners should be able to:
State what is meant by refraction.
Describe how light refracts through mediums.
Explain why refraction is useful.
A comprehensive lesson which teaches students about charges and how these charges contribute towards static electricity. Students will then progress to find how these charges interact with another and generate current.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Justify how charges behave and how this contributes to electricity.
By the end of the lesson learners should be able to:
Success criteria:
Identify the 2 charges.
Describe how materials can become charged.
Explain why static shocks occur.
Powerpoint contains 20 slides.
A worksheet is also included to complement the Van Der Graaf.
By the end of the lesson learners should be able to:
Identify the circuit symbols for: a thermistor and a LDR.
Describe how resistance changes in a thermistor and LDR.
Explain why both LDRs and thermistors are used.
A comprehensive lesson that teaches students about magnetic poles, magnetic filed lines and how these field lines impact attraction and repulsion.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: To justify the effects of magnetic field lines in repulsion and attraction.
By the end of the lesson learners should be able to:
Success criteria:
-Identify the poles on a magnet.
-Describe the direction of magnetic field lines.
-Explain the effect of combining magnetic field lines.
Powerpoint contains 27 slides.
By the end of the lesson learners should be able to:
State what is meant by specific heat capacity.
Describe how specific heat capacity affects how a substance increases in temperature.
Explain the uses of a substance with a large specific heat capacity.
By the end of the lesson learners should be able to:
Identify a series and parallel circuits.
Describe the properties of series and parallel circuits.
Explain why parallel circuits are used in homes.
By the end of the lesson learners should be able to:
State what holds particles together in substances.
Describe what happens when bonds are made / broken.
Explain why water, which has a large specific latent heat, remains in each state for a long time.
A 6 page mini-booklet that should ensure students are:
Able to identify longitudinal waves,
Able to identify transverse waves,
Able to describe the amplitude of a wave,
Able to describe the wavelength of a wave,
Able to describe frequency,
Able to identify the effects of amplitude and frequency on sound,
Able to rearrange equations using the triangle,
Able to use the wave speed equation.
Includes reading for understanding tasks.
Suitable for higher ability KS3 students and KS4 students.
A google slides resource that is ready to be used out of the box. Slides include guided walkthroughs for calculating KiloWattHours and the cost of using domestic appliances.
Slides might need some alterations when opened with powerpoint.
By the end of the lesson learners will be able to:
Recall the equation for power
Describe the link between power, fuel use and the cost of using domestic appliances
Explain the difference between energy and power
The resource was designed on google slides and should work fine on powerpoint, it might just need some rearranging.
By the end of the lesson learners should be able to:
Define the conservation of momentum.
Describe how to calculate the combined momentum of two objects.
Calculate the velocity of objects after a collision when given the starting velocities and masses.
All features work when used with google slides. All features should work with PowerPoint, but might need some rearranging.
By the end of the lesson learners will be able to:
Recall that current causes electromagnetism.
Describe how to generate electricity using electromagnetic induction.
Explain why alternating current can cook food in an induction hob.
All features work when used with google slides. All features should work with PowerPoint, but might need some rearranging.
By the end of the lesson learners will be able to:
Identify the risk of using radioactive materials.
Describe some uses of radioactive materials.
Evaluate the use of radioactive materials.
All features work when used with google slides. All features should work with PowerPoint, but might need some rearranging.
By the end of the lesson learners will be able to:
Identify the forces acting on objects as they move away from Earth.
Describe how to get a satellite into orbit.
Evaluate the uses of satellites.
By the end of the lesson I will be able to:
Identify the structure of beta and alpha radiation.
Describe how to calculate nuclear equations.
Justify which element is produced from a nuclear equation.
By the end of the lesson learners should be able to:
State the equation for acceleration
Describe how to measure the acceleration of an object.
Explain why a change in acceleration indicates a change in direction
A simple settler activity where students need to highlight the correct statements to find the hidden letter.
Topics include:
Forces,
Sound,
Light,
Waves,
Speed,
Energy.