By the end of the lesson learners should be able to:
State what is meant by refraction.
Describe how light refracts through mediums.
Explain why refraction is useful.
By the end of the lesson learners should be able to:
Identify metals and non-metals.
Describe 2 properties of metals and non-metals.
Explain why non-metals can harm the environment
By the end of the lesson learners should be able to:
Identify what is meant by oxidation and reduction.
Describe how halogens and metals react during displacement reactions.
Explain why transitions metals can bond to many different atoms.
By the end of the lesson learners should be able to:
•Identify the elements within periods 2 and 3.
•Describe how periods 2 and 3 will react with Oxygen.
•Explain the formula, state and structure of each element in period 2 and 3.
By the end of the lesson learners should be able to:
•Identify the S, P and D blocks.
•Describe what is meant by an ionisation energy.
•Explain why the ionisation energy changes through groups and periods.
By the end of the lesson learners should be able to:
Identify the trends in atomic radius across a period.
Identify the trend in atomic radius down a group.
Describe the trend in melting points across a period.
Explain why this trend occurs by mentioning the types of bonding.
Suitable for KS5 students (Yrs 17-18)
By the end of the lesson learners should be able to:
Identify the parts that make up the ear.
Describe how the ear manipulates sound.
Explain why people can experience hearing loss / damage.
A resource containing a comprehensive powerpoint slideshow that will allow for learners to learn about drag forces friction and air resistance.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how drag forces affect the movement of an object.
Success criteria:
Identify 2 drag forces.
Describe how drag forces affect objects.
Explain why air resistance and friction can be useful and a nuisance.
This lesson contains 22 slides
By the end of the lesson learners should be able to:
Identify independent and dependent variables.
Describe the effect of sucrose concentration on % change in mass
Explain why there is a change in mass in the potatoes.
By the end of the lesson learners should be able to:
Identify the cause of sound waves.
Describe how amplitude, loudness, frequency and pitch are connected.
Explain why people can’t talk to another in space.
By the end of the lesson learners should be able to:
Identify different types of waves.
Describe how to measure properties of waves.
Compare constructive and destructive interference.
By the end of the lesson learners should be able to:
Identify action and reaction forces.
Describe Newton’s third law.
Explain why people might experience pain when placing a force on an object.
A resource containing a comprehensive powerpoint slideshow that will guide learners through gravity and electrostatic non contact forces.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how forces can act at a distance and explain why these forces are present.
Success criteria:
-Identify non-contact forces.
-Describe how objects react to some non-contact forces.
-Explain why non-contact forces are needed for our daily lives.
This lesson contains 17 slides
Produced to be used when delivering the activate 1 pathway.
A resource containing 2 powerpoint slides for 2 lessons and a worksheet for applying Hooke’s law and analysing data.
I run the resource as an initial practical for investigating Hooke’s law and the second lesson to further solidify theory.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
For the practical lesson:
By the end of the lesson students should be able to:
Learning objective: Investigate the effects of forces on the extension of a spring.
Success criteria:
-Identify independent and dependent variables.
-Describe how to write a method concerning spring extension.
-Explain why repeatability and reliability are important factors within experiments.
This lesson contains 17 slides.
For the theory lesson:
By the end of the lesson students should be able to:
Learning objective: To analyse the results and draw conclusions between the spring practical and Hooke’s law theory.
Success criteria:
Identify the forces needed to extend and compress a spring.
Describe Hooke’s law.
Explain why the pattern for Hooke’s law does not remain indefinitely.
This lesson contains 17 slides.
The worksheet contains 2 pages.
By the end of the lesson learners should be able to:
Identify the methods used to treat water.
Describe the process of treating water.
Explain why it is important to treat water.
Learning Objectives:
To understand that distillation can be used to separate a liquid from the solids, which are dissolved in it.
To explain how distillation occurs.
To explain how Condenser works to distill a solvent from a solution.
By the end of the lesson learners should be able to:
Identify the: Dalton, Thomson and Rutherford models of atoms.
Describe how each of the models came about.
Explain why Rutherford’s experiment proved that atoms are made mostly of empty space.