Hero image

Free Educational Resources from Mr. Noureddine Tadjerout

Average Rating4.62
(based on 33 reviews)

I am a versatile professional with a diverse skill set and a strong background in education and technology. As an accomplished Author, Teacher Trainer, Examiner, and certified Apple Teacher and VEX Robotics. I have honed my expertise in Computer Science and Mathematics education. Additionally, I hold the role of Curriculum Development Specialist, focusing on Computer Science, Engineering, and Microsoft Office. I am passionate about creating educational resources and assisting fellow educators.

240Uploads

86k+Views

226k+Downloads

I am a versatile professional with a diverse skill set and a strong background in education and technology. As an accomplished Author, Teacher Trainer, Examiner, and certified Apple Teacher and VEX Robotics. I have honed my expertise in Computer Science and Mathematics education. Additionally, I hold the role of Curriculum Development Specialist, focusing on Computer Science, Engineering, and Microsoft Office. I am passionate about creating educational resources and assisting fellow educators.
STEAM Project 5 - Water Rocketry 2024
TadjeroutTadjerout

STEAM Project 5 - Water Rocketry 2024

(0)
Project Overview: KS3 STEAM Project - Water Rocketry 2024 This comprehensive STEAM project engages Year 8 students in the exciting world of water rocketry. Students will design, build, and test a water rocket with the goal of achieving the highest possible altitude. The project integrates principles from mathematics, physics, and chemistry, providing a hands-on, interdisciplinary learning experience. Key Activities: Research: Investigate a space launch complex and create a detailed report and model. Experimentation: Conduct experiments to understand the variables affecting rocket performance. Design and Build: Apply research and experimental data to construct and test a high-performing water rocket. Presentation: Present findings, processes, and final designs to peers, teachers, and parents. Learning Outcomes: Develop critical thinking and problem-solving skills. Apply scientific principles to real-world scenarios. Enhance teamwork and communication abilities. This project not only fosters a deep understanding of STEAM subjects but also inspires creativity and innovation among students. Perfect for engaging young minds and making learning fun!
Computer Science_Year 7/8/9/10/11 _Exam with Answer_Number systems ( Binary and Hexadecimal)
TadjeroutTadjerout

Computer Science_Year 7/8/9/10/11 _Exam with Answer_Number systems ( Binary and Hexadecimal)

(0)
Computer Science_Year 7/8/9/10/11 _Exam with Answer_1.1 Number systems Computer Science_Year 7/8/9/10/11 _Exam with Answer_1.1 Number systems Data representation 1.1 Number systems Candidates should be able to: 1 Understand how and why computers use binary to represent all forms of data 2 (a) Understand the denary, binary and hexadecimal number systems (b) Convert between (i) positive denary and positive binary (ii) positive denary and positive hexadecimal (iii) positive hexadecimal and positive binary 3 Understand how and why hexadecimal is used as a beneficial method of data representation 4 (a) Add two positive 8-bit binary integers (b) Understand the concept of overflow and why it occurs in binary addition Notes and guidance • Any form of data needs to be converted to binary to be processed by a computer • Data is processed using logic gates and stored in registers • Denary is a base 10 system • Binary is a base 2 system • Hexadecimal is a base 16 system
Artificial intelligence (AI) Curriculum from Year 7 to Year 13
TadjeroutTadjerout

Artificial intelligence (AI) Curriculum from Year 7 to Year 13

(0)
Introduction to the AI Curriculum from Year 7 to Year 13 Artificial Intelligence (AI) is revolutionizing industries, economies, and societies at an unprecedented pace. Understanding AI’s principles and applications is becoming essential for the next generation of innovators, leaders, and informed citizens. Our AI curriculum, spanning from Year 7 to Year 13, is meticulously designed to equip students with foundational knowledge, practical skills, and ethical awareness in AI. By integrating AI education into school curricula, we aim to foster critical thinking, creativity, and problem-solving abilities among students. Why Choose Our AI Curriculum? 1. Future-Ready Education: Prepare your students for a future dominated by AI. This curriculum ensures they are not just passive consumers of technology but active innovators and ethical decision-makers. 2. Comprehensive Learning Journey: Our curriculum is structured to provide a progressive learning experience, starting with basic concepts in Year 7 and advancing to specialized AI topics and applications by Year 13. Each year builds on the previous one, ensuring a deep and thorough understanding of AI. 3. Practical, Hands-On Experience: Students engage in practical projects and collaborative learning from the outset. They will not only learn theoretical concepts but also apply their knowledge in meaningful, real-world contexts. 4. Ethical AI Development: We emphasize the importance of ethics in AI development throughout the curriculum. Students will explore the ethical implications of AI technologies and learn to develop AI responsibly. 5. Expert-Led Instruction: Our curriculum is developed by leading AI educators and industry experts, ensuring that the content is cutting-edge and relevant. Teachers will receive comprehensive training and support to deliver this curriculum effectively.
Research Paper: Implementing AI in Education: Enhancing Learning and Administrative Efficiency
TadjeroutTadjerout

Research Paper: Implementing AI in Education: Enhancing Learning and Administrative Efficiency

(0)
Implementing AI in Education: Enhancing Learning and Administrative Efficiency Artificial Intelligence (AI) has revolutionized the EdTech industry, transforming the way education is delivered and experienced. This transformation is driven by AI’s ability to analyses vast amounts of data and tailor learning experiences to individual needs. Here, we explore how AI impacts EdTech through personalized learning, intelligent tutoring systems, automated grading and feedback, predictive analytics, and enhanced administrative efficiency. We also address the challenges and future prospects of AI in education. Note: This research was conducted using AI; however, the main idea and structure were developed by Mr. Noureddine Tadjerout. Utilizing AI can expedite research and analysis, but the core ideas and research are human-driven. AI is a tool to assist and enhance the research process, not replace human creativity and insight. Table of Contents Introduction • Overview of AI in Education • Importance and Impact of AI Main Responsibilities of an AI Implementation Specialist • Needs Assessment • Solution Design and Selection • Deployment and Integration • Training and Support • Performance Monitoring Real System Implementation in a School • Personalized Learning • Example: Mathematics (Primary and Secondary Levels) • Implementation Details • Intelligent Tutoring Systems • Example: Science (Primary and Secondary Levels) • Implementation Details • Automated Grading and Feedback • Example: English (Secondary Level) • Implementation Details • Predictive Analytics • Example: General Academic Performance (Primary and Secondary Levels) • Implementation Details • Enhanced Administrative Efficiency • Example: Administrative Tasks • Implementation Details AI Applications and Tools for Specific Subjects • Science • Physics • English • Mathematics • ICT/Computer Science • History • Geography • Chemistry • STEAM • Spanish/French Challenges and Considerations • Algorithmic Biases • Data Privacy • Digital Divide Future Prospects • Advancements in AI Technologies • Potential for Bridging Educational Gaps • Promoting Lifelong Learning Conclusion References Note • Acknowledgment of AI and Human Collaboration in Research
STEAM Project 4- Landscape Mountain View with bridge, river and houses for Y5/6/7/8/9 plus Rubric
TadjeroutTadjerout

STEAM Project 4- Landscape Mountain View with bridge, river and houses for Y5/6/7/8/9 plus Rubric

(0)
Introduction : Introduction to Landscape Modeling Welcome to our project on landscape modeling! Today, we will explore how to create a realistic landscape model using both digital tools like Tinkercad and physical materials. Our goal is to recreate a mountain scene with a bridge and river, similar to the image shown. We’ll start by sketching our ideas, then move on to digital modeling in Tinkercad, and finally, build a physical model. This process will help us understand the principles of landscape design and the practical aspects of constructing a model. Marking Rubric for Project 4 : Landscape