Hero image

Teach Science & Beyond

Average Rating4.79
(based on 28 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

134k+Views

86k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Transition Metals & Their Compounds
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Their Compounds

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks and plenary quiz on Transition Metals & Their Compounds. All answers included **By the end of this lesson KS5 students should be able to: To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge 2.To understand the elements Ti–Cu as transition elements To illustrate, using at least two transition elements, of: (i) the existence of more than one oxidation state for each element in its compounds (ii) the formation of coloured ions (iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
The Halogens: Properties & Reactivity
TeachScienceBeyondTeachScienceBeyond

The Halogens: Properties & Reactivity

(0)
A structured theory lesson including starter activity, AfL work tasks and main work tasks all with answers on The Halogens: Physical Properties and Trends in Reactivity By the end of this lesson KS5 students should be able to: To describe and explain the trend in boiling points of the halogens in terms of induced dipole-dipole interactions (London Forces) To describe and explain the trend in reactivity of the halogens illustrated by their displacement reaction with other halide ions To construct full and ionic equations of halogen-halide displacement reactions and to predict the colour changes of these reactions in aqueous and organic solutions All tasks have worked out answers, which will allow students to self assess their work during the lesson. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Disproportionation & The Uses of Chlorine
TeachScienceBeyondTeachScienceBeyond

Disproportionation & The Uses of Chlorine

(0)
A structured KS5 lesson including starter activity, and main work tasks all with answers on Disproportionation & The Uses of Chlorine By the end of this lesson KS5 students should be able to: To explain the term disproportionation To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions To evaluate the uses of chlorine (How Science Works) All tasks have worked out answers, which will allow students to self assess their work during the lesson For the 3rd learning objective, students will have an opportunity to explore the uses of chlorine beyond the curriculum by completing a group research task based on the following OCR specification point: HSW9,10,12 Decisions on whether or not to chlorinate water depend on balance of benefits and risks, and ethical considerations of people’s right to choose. Consideration of other methods of purifying drinking water. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Stereoisomerism in Complex Ions
TeachScienceBeyondTeachScienceBeyond

Stereoisomerism in Complex Ions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Stereoisomerism in Complex Ions **By the end of this lesson KS5 students should be able to: To understand the types of stereoisomerism shown by metal complexes, including those associated with bidentate and multidentate ligands including: (i) cis–trans isomerism e.g. Pt(NH3)2Cl2 (ii) optical isomerism e.g. [Ni(NH2CH2CH2NH2)3] 2+ To understand the use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Transition Metals & Complex Ions
TeachScienceBeyondTeachScienceBeyond

Transition Metals & Complex Ions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Complex Ions **By the end of this lesson KS5 students should be able to: To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands To use the terms complex ion and coordination number To construct examples of complexes with: (i) six-fold coordination with an octahedral shape (ii) four-fold coordination with either a planar or tetrahedral shape The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Testing for Carbonyl Compounds
TeachScienceBeyondTeachScienceBeyond

Testing for Carbonyl Compounds

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the Testing for Carbonyl Compounds By the end of this lesson KS5 students should be able to: To understand the use of Tollens’ reagent to: (i) detect the presence of an aldehyde group (ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver To understand the use of 2,4-dinitrophenylhydrazine to: (i) detect the presence of a carbonyl group in an organic compound (ii) identify a carbonyl compound from the melting point of the derivative Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Proton NMR Spectroscopy (Part 1)
TeachScienceBeyondTeachScienceBeyond

Proton NMR Spectroscopy (Part 1)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 1) NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 2) By the end of this lesson KS5 students should be able to: To analyse proton NMR spectra of an organic molecule to make predictions about: The number of proton environments in the molecule The different types of proton environment present from chemical shift values Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Collision Theory and Rates of Reaction
TeachScienceBeyondTeachScienceBeyond

Collision Theory and Rates of Reaction

(0)
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Collision Theory and Rates of Reaction. Suitable for OCR Specification (AS Chemistry) By the end of this lesson KS5 students should be able to: To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions To calculate the rate of reaction using the gradients of a concentration-time graph To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Buffer Solution Calculations 2 (OCR)
TeachScienceBeyondTeachScienceBeyond

Buffer Solution Calculations 2 (OCR)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Buffer Solution Calculations (part 2) (Suitable for the OCR Specification) By the end of this lesson KS5 students should be able to: To calculate the pH of a weak acid-strong alkali buffer solution To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Revision on Buffer Solutions (OCR)
TeachScienceBeyondTeachScienceBeyond

Revision on Buffer Solutions (OCR)

(0)
A structured KS5 revision lesson including starter activity and main work task (3 rounds of questions) all with answers included on Revision on Buffer Solutions (Suitable for the OCR Specification) By the end of this lesson KS5 students should be able to: To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Relative Masses
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Relative Masses

(0)
A complete lesson including starter activity, mini Afl tasks and main work task with answers for KS5 lesson on relative masses ( relative atomic mass, relative molecular mass and relative formula mass) By the end of the lesson students should be able to Define the terms relative atomic mass, relative formula mass and relative molecular mass Calculate the relative formula mass and relative molecular mass of compounds and molecules Students will be able to take rich notes on relative atomic mass, relative molecular mass and relative formula mass throughout the lesson The teacher will be able to quickly assess students’ understanding of the relative mass terms by carrying out mini afl tasks either on mini white boards or in their books The lesson ends with practice exam style questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Combined Science: Waste Water Treatment (AQA)
TeachScienceBeyondTeachScienceBeyond

GCSE Combined Science: Waste Water Treatment (AQA)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS4 GCSE lesson on waste water treatment. By the end of the lesson students should be able to: State the stages of waste water treatment Explain the stages of waste water treatment Compare the ease of treating waste, ground and salt water Students will be able to take rich notes on waste water treatment. The teacher will be able to quickly assess students’ understanding of waste water treatment by carrying our mini AfL questions using A,B,C cards or mini white baords The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: Mass Changes in Reactions
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Mass Changes in Reactions

(0)
A well structured lesson including starter activity and lesson slides on mass changes when gases are in reactions. Suitable for AQA GCSE Chemistry and combined science (higher and foundation) The lesson begins with a short starter task (DO NOW) on gases in reactions Then by the end of this lesson KS4 students should be able to: To relate mass, volume and concentration To calculate the mass of solute in solution To relate concentration in mol/dm3 to mass and volume The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Oxidation States
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Oxidation States

(0)
Lesson 1 of 3 on Redox Reactions in AS Chemistry. This lesson focuses on OXIDATION STATES. This lesson includes starter activity, mini AfL work tasks with answers, main work tasks with answers (NOTE: Lesson 1 , 2 and 3 are available as a bundle resource). This topic is also likely to be recapped in year 13 when students are introduced to redox reactions and electrode potential. By the end of the lesson students should be able to: Recall the rules for oxidation states of uncombined elements and elements in compounds Determine the oxidation states of elements in a redox reaction Identify what substance has been reduced or oxidised in a redox reaction Students will be able to take rich notes on this topic The teacher will be able to quickly assess students’ understanding of oxidation states by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Storage and Fuel Cells
TeachScienceBeyondTeachScienceBeyond

Storage and Fuel Cells

(0)
A structured KS5 lesson including starter activity and AfL work tasks on Storage and Fuel Cells **By the end of this lesson KS5 students should be able to: **LO1: To understand the application of the principles of electrode potentials to modern storage cells **LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage **LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Nitrogen Compounds & Polymers (OCR)
TeachScienceBeyondTeachScienceBeyond

Nitrogen Compounds & Polymers (OCR)

6 Resources
6 Full Lesson Bundle on Nitrogen Compounds and Polymers suitable for the OCR A Level Chemistry specification. Please review the learning objectives below. Lesson 1: Introduction to Amines To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Lesson 2: Preparation of Amines To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Lesson 3: Amino Acids and Their Reactions To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Lesson 4: Chirality To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Lesson 5: Amides To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Lesson 6: Condensation Polymers 1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides 2. To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation 3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Alkanes (AQA)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Alkanes (AQA)

4 Resources
4 structured lessons covering topics from AS Chemistry Alkanes from the AQA Specification Lesson 1: Fractional Distillation of Crude Oil Describe what crude oil contains and to understand its uses Explain how crude oil is separated into useful fractions on an industrial scale Explain how crude oil is separated into useful fractions on an industrial scale Lesson 2: Cracking of Alkanes To describe what cracking is and its economic benefits To explain what thermal and catalytic cracking To compare and evaluate the conditions for and the products of thermal and catalytic cracking Lesson 3: Combustion of Alkanes To understand why alkanes are good fuels To recall the complete and incomplete combustions equations (both word and symbol) of alkanes To explain the environmental problems associated with pollutant products when alkanes are used as fuels To explain the use of catalytic convertors and processes such as flue gas desulfurisation to remove gaseous pollutants produced during alkane combustion Lesson 4: Free Radical Substitution of Alkanes 1)To know what a free radical is 2) To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination 3) To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Le Chatelier's Principle & Equilibria
TeachScienceBeyondTeachScienceBeyond

Le Chatelier's Principle & Equilibria

(1)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks with answers on Dynamic Equilibrium and Le Chatelier’s Principle By the end of the lesson students should be able to: To explain the term dynamic equilibrium To apply le Chatelier’s principle to homogeneous equilibria in order to deduce qualitatively the effect of a change in temperature, pressure or concentration on the position of equilibrium To explain why catalysts do not change the position of equilibrium To explain the importance to the chemical industry of a compromise between chemical equilibrium and reaction rate in deciding the operational conditions Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Chemical Equilibrium (Practical Skills)
TeachScienceBeyondTeachScienceBeyond

Chemical Equilibrium (Practical Skills)

(0)
A structured KS5 theory lesson including starter activity and main work tasks with answers included on Chemical Equilibrium (Practical Skills) By the end of the lesson students should be able to: To understand how a titration experiment can be used to calculate the equilibrium constant, Kc To understand how a colorimeter can be used to calculate the equilibrium constant, Kc To analyse exam questions based on titration experiments in order to calculate out Kc Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Synthetic Routes in Organic Synthesis (OCR)
TeachScienceBeyondTeachScienceBeyond

Synthetic Routes in Organic Synthesis (OCR)

2 Resources
This discounted bundle includes: A full double lesson on synthetic routes in organic synthesis (all answers included) A follow up homework task (all answers included) A full revision summary of the year 12 & 13 organic reactions (perfect for making flashcards!) The full double lesson will cover the following learning objectives i) To identify individual functional groups for an organic molecule containing several functional groups ii) To predict the properties and reactions of organic molecules containing several functional groups iii) To create multi-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above