Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A structured KS5 lesson (Yr12) including starter activity, discussion questions and main work tasks all with answers included on Synthetic Routes in Organic Synthesis.
By the end of this lesson KS5 students should be able to:
LO1: To identify individual functional groups for an organic molecule containing several functional groups
LO2: To predict the properties and reactions of an organic molecule containing several functional groups
LO3: To create two-stage synthetic routes for preparing organic compounds
**A free summary of the synthetic routes for year 12 (AS Chemistry) can be found here: **
https://www.tes.com/teaching-resource/resource-12367174
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks and plenary quiz on Transition Metals & Their Compounds. All answers included
**By the end of this lesson KS5 students should be able to:
To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge
2.To understand the elements Ti–Cu as transition elements
To illustrate, using at least two transition elements, of:
(i) the existence of more than one oxidation state for each element in its compounds
(ii) the formation of coloured ions
(iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured theory lesson including starter activity, AfL work tasks and main work tasks all with answers on The Halogens: Physical Properties and Trends in Reactivity
By the end of this lesson KS5 students should be able to:
To describe and explain the trend in boiling points of the halogens in terms of induced dipole-dipole interactions (London Forces)
To describe and explain the trend in reactivity of the halogens illustrated by their displacement reaction with other halide ions
To construct full and ionic equations of halogen-halide displacement reactions and to predict the colour changes of these reactions in aqueous and organic solutions
All tasks have worked out answers, which will allow students to self assess their work during the lesson.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, and main work tasks all with answers on Disproportionation & The Uses of Chlorine
By the end of this lesson KS5 students should be able to:
To explain the term disproportionation
To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions
To evaluate the uses of chlorine (How Science Works)
All tasks have worked out answers, which will allow students to self assess their work during the lesson
For the 3rd learning objective, students will have an opportunity to explore the uses of chlorine beyond the curriculum by completing a group research task based on the following OCR specification point:
HSW9,10,12 Decisions on whether or not to chlorinate water depend on balance of benefits and risks, and ethical considerations of people’s right to choose. Consideration of other methods of purifying drinking water.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Stereoisomerism in Complex Ions
**By the end of this lesson KS5 students should be able to:
To understand the types of stereoisomerism shown by metal complexes, including those associated with bidentate and multidentate ligands including:
(i) cis–trans isomerism e.g. Pt(NH3)2Cl2
(ii) optical isomerism e.g. [Ni(NH2CH2CH2NH2)3] 2+
To understand the use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Complex Ions
**By the end of this lesson KS5 students should be able to:
To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands
To use the terms complex ion and coordination number
To construct examples of complexes with:
(i) six-fold coordination with an octahedral shape
(ii) four-fold coordination with either a planar or tetrahedral shape
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the Testing for Carbonyl Compounds
By the end of this lesson KS5 students should be able to:
To understand the use of Tollens’ reagent to:
(i) detect the presence of an aldehyde group
(ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver
To understand the use of 2,4-dinitrophenylhydrazine to:
(i) detect the presence of a carbonyl group in an organic compound
(ii) identify a carbonyl compound from the melting point of the derivative
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 1)
NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 2)
By the end of this lesson KS5 students should be able to:
To analyse proton NMR spectra of an organic molecule to make predictions about:
The number of proton environments in the molecule
The different types of proton environment present from chemical shift values
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on Collision Theory and Rates of Reaction. Suitable for OCR Specification (AS Chemistry)
By the end of this lesson KS5 students should be able to:
To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
To calculate the rate of reaction using the gradients of a concentration-time graph
To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Buffer Solution Calculations (part 2) (Suitable for the OCR Specification)
By the end of this lesson KS5 students should be able to:
To calculate the pH of a weak acid-strong alkali buffer solution
To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 revision lesson including starter activity and main work task (3 rounds of questions) all with answers included on Revision on Buffer Solutions (Suitable for the OCR Specification)
By the end of this lesson KS5 students should be able to:
To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali
To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, mini Afl tasks and main work task with answers for KS5 lesson on relative masses ( relative atomic mass, relative molecular mass and relative formula mass)
By the end of the lesson students should be able to
Define the terms relative atomic mass, relative formula mass and relative molecular mass
Calculate the relative formula mass and relative molecular mass of compounds and molecules
Students will be able to take rich notes on relative atomic mass, relative molecular mass and relative formula mass throughout the lesson
The teacher will be able to quickly assess students’ understanding of the relative mass terms by carrying out mini afl tasks either on mini white boards or in their books
The lesson ends with practice exam style questions for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS4 GCSE lesson on waste water treatment.
By the end of the lesson students should be able to:
State the stages of waste water treatment
Explain the stages of waste water treatment
Compare the ease of treating waste, ground and salt water
Students will be able to take rich notes on waste water treatment.
The teacher will be able to quickly assess students’ understanding of waste water treatment by carrying our mini AfL questions using A,B,C cards or mini white baords
The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A well structured lesson including starter activity and lesson slides on mass changes when gases are in reactions. Suitable for AQA GCSE Chemistry and combined science (higher and foundation)
The lesson begins with a short starter task (DO NOW) on gases in reactions
Then by the end of this lesson KS4 students should be able to:
To relate mass, volume and concentration
To calculate the mass of solute in solution
To relate concentration in mol/dm3 to mass and volume
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Lesson 1 of 3 on Redox Reactions in AS Chemistry. This lesson focuses on OXIDATION STATES. This lesson includes starter activity, mini AfL work tasks with answers, main work tasks with answers (NOTE: Lesson 1 , 2 and 3 are available as a bundle resource). This topic is also likely to be recapped in year 13 when students are introduced to redox reactions and electrode potential.
By the end of the lesson students should be able to:
Recall the rules for oxidation states of uncombined elements and elements in compounds
Determine the oxidation states of elements in a redox reaction
Identify what substance has been reduced or oxidised in a redox reaction
Students will be able to take rich notes on this topic
The teacher will be able to quickly assess students’ understanding of oxidation states by carrying our mini AfL tasks either on mini white boards or in students’ books
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A whole lesson including starter activity, AfL work tasks and main work task all with answers on Changes of State
By the end of this lesson KS4 students should be able to:
Describe how, when substances change state, mass is conserved
Describe energy transfer in changes of state
Explain changes of state in terms of particles.
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A whole lesson including starter activity, AfL work tasks and main work task all with answers on Specific Heat Capacity. Suitable for AQA GCSE Physics and Combined Science (both higher and foundation)
By the end of this lesson KS4 students should be able to:
Describe the effect of increasing the temperature of a system in terms of particles
State the factors that are affected by an increase in temperature of a substance
Calculate specific heat capacity
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks on Storage and Fuel Cells
**By the end of this lesson KS5 students should be able to:
**LO1: To understand the application of the principles of electrode potentials to modern storage cells
**LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage
**LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
6 Full Lesson Bundle on Nitrogen Compounds and Polymers suitable for the OCR A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Introduction to Amines
To know how to name amines using IUPAC rules
To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair
To understand the reactions of amines with dilute inorganic acids
Lesson 2: Preparation of Amines
To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid
To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines
To explain the reaction conditions that favours the formation of a primary aliphatic amine
To explain the reaction conditions that favours the formation of a quaternary ammonium salt
Lesson 3: Amino Acids and Their Reactions
To know the general formula for an α-amino acid as RCH(NH2)COOH
To understand the following reactions of amino acids:
(i) reaction of the carboxylic acid group with alkalis and in the formation of esters
(ii) reaction of the amine group with acids
Lesson 4: Chirality
To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre
To identify chiral centres in a molecule of any organic compound.
To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes
Lesson 5: Amides
To review the synthesis of primary and secondary amides
To understand the structures of primary and secondary amides
To name primary and secondary amides
Lesson 6: Condensation Polymers
1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides
2. To predict from addition and condensation polymerisation:
i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation
3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
4 structured lessons covering topics from AS Chemistry Alkanes from the AQA Specification
Lesson 1: Fractional Distillation of Crude Oil
Describe what crude oil contains and to understand its uses
Explain how crude oil is separated into useful fractions on an industrial scale
Explain how crude oil is separated into useful fractions on an industrial scale
Lesson 2: Cracking of Alkanes
To describe what cracking is and its economic benefits
To explain what thermal and catalytic cracking
To compare and evaluate the conditions for and the products of thermal and catalytic cracking
Lesson 3: Combustion of Alkanes
To understand why alkanes are good fuels
To recall the complete and incomplete combustions equations (both word and symbol) of alkanes
To explain the environmental problems associated with pollutant products when alkanes are used as fuels
To explain the use of catalytic convertors and processes such as flue gas desulfurisation to remove gaseous pollutants produced during alkane combustion
Lesson 4: Free Radical Substitution of Alkanes
1)To know what a free radical is
2) To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
3) To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above